Relativistic wave equations

http://dbpedia.org/resource/Relativistic_wave_equations an entity of type: WikicatWaves

قبل ظهور نظرية المجال الكمي حاول علماء الفيزياء صياغة معادلة شرودنجر للتتوافق مع النسبية الخاصة وسميت هذه المعادلات معادلات الموجة النسبية (بالإنجليزية: Relativistic wave equations)‏ حيث قام إروين شرودنغر بوضع أول معادلة من معادلات الموجة النسبية وسميت هذه المعادلة معادلة كلاين-غوردون، إلا أن هذه المعادلة تعطي نتائج خاطئة عند حساب طاقة مستويات ذرة الهيدروجين . rdf:langString
In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields.The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations (see classical field theory for background). rdf:langString
rdf:langString معادلات الموجة النسبية
rdf:langString Relativistic wave equations
xsd:integer 577162
xsd:integer 1113954081
rdf:langString قبل ظهور نظرية المجال الكمي حاول علماء الفيزياء صياغة معادلة شرودنجر للتتوافق مع النسبية الخاصة وسميت هذه المعادلات معادلات الموجة النسبية (بالإنجليزية: Relativistic wave equations)‏ حيث قام إروين شرودنغر بوضع أول معادلة من معادلات الموجة النسبية وسميت هذه المعادلة معادلة كلاين-غوردون، إلا أن هذه المعادلة تعطي نتائج خاطئة عند حساب طاقة مستويات ذرة الهيدروجين .
rdf:langString In physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields.The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT. The equations themselves are called "wave equations" or "field equations", because they have the mathematical form of a wave equation or are generated from a Lagrangian density and the field-theoretic Euler–Lagrange equations (see classical field theory for background). In the Schrödinger picture, the wave function or field is the solution to the Schrödinger equation; one of the postulates of quantum mechanics. All relativistic wave equations can be constructed by specifying various forms of the Hamiltonian operator Ĥ describing the quantum system. Alternatively, Feynman's path integral formulation uses a Lagrangian rather than a Hamiltonian operator. More generally – the modern formalism behind relativistic wave equations is Lorentz group theory, wherein the spin of the particle has a correspondence with the representations of the Lorentz group.
xsd:nonNegativeInteger 30684

data from the linked data cloud