Related rates
http://dbpedia.org/resource/Related_rates an entity of type: Abstraction100002137
في حساب التفاضل مسائل المعدلات المرتبطة هي المسائل التي تبحث إيجاد معدل تغير مجهول لكمية ما عن طريق ربط هذه الكمية بكميات أخرى معدل تغيرها معلوم، عادة ما تكون معدلات التغير منسوبة إلى الزمن وفي هذه الحالة تسمى المعدلات الزمنية المرتبطة.
rdf:langString
In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad applications in these fields. Differentiation with respect to time or one of the other variables requires application of the chain rule, since most problems involve several variables. Written in Leibniz notation, this is: For example, if then
rdf:langString
rdf:langString
معدلات مرتبطة
rdf:langString
Related rates
xsd:integer
1278389
xsd:integer
1117188112
rdf:langString
في حساب التفاضل مسائل المعدلات المرتبطة هي المسائل التي تبحث إيجاد معدل تغير مجهول لكمية ما عن طريق ربط هذه الكمية بكميات أخرى معدل تغيرها معلوم، عادة ما تكون معدلات التغير منسوبة إلى الزمن وفي هذه الحالة تسمى المعدلات الزمنية المرتبطة.
rdf:langString
In differential calculus, related rates problems involve finding a rate at which a quantity changes by relating that quantity to other quantities whose rates of change are known. The rate of change is usually with respect to time. Because science and engineering often relate quantities to each other, the methods of related rates have broad applications in these fields. Differentiation with respect to time or one of the other variables requires application of the chain rule, since most problems involve several variables. Fundamentally, if a function is defined such that , then the derivative of the function can be taken with respect to another variable. We assume is a function of , i.e. . Then , so Written in Leibniz notation, this is: Thus, if it is known how changes with respect to , then we can determine how changes with respect to and vice versa. We can extend this application of the chain rule with the sum, difference, product and quotient rules of calculus, etc. For example, if then
xsd:nonNegativeInteger
10078