Regular skew polyhedron

http://dbpedia.org/resource/Regular_skew_polyhedron

In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces. Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra. rdf:langString
Правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани. rdf:langString
在幾何學中,扭歪多面體(英語:Skew polyhedron)是指頂點、邊或面並非全部位於同一個三維空間中的多面體,即扭歪多邊形的高一維類比,因此其無法找到一個唯一的內部區域以及其體積。 正扭歪多面體代表每個面全等、每條邊等長、每個角都相等的扭歪多面體,是一系列可能具有非平面的面或頂點圖。考克斯特的研究著重於具有扭歪頂點圖新的四維多面體,後期多由研究有扭歪面的形狀。 具有無限多個面的扭歪多面體稱為扭歪無限面體。除了扭歪無限面體之外的扭歪多面體僅能存在於四維或以上的空間。 rdf:langString
rdf:langString Regular skew polyhedron
rdf:langString Правильный косой многогранник
rdf:langString 扭歪多面體
xsd:integer 19193037
xsd:integer 1090517345
rdf:langString In geometry, the regular skew polyhedra are generalizations to the set of regular polyhedra which include the possibility of nonplanar faces or vertex figures. Coxeter looked at skew vertex figures which created new 4-dimensional regular polyhedra, and much later Branko Grünbaum looked at regular skew faces. Infinite regular skew polyhedra that span 3-space or higher are called regular skew apeirohedra.
rdf:langString Правильный косой многогранник — это обобщение множества правильных многогранников, которое включает возможность непланарных граней или вершинных фигур. Коксетер рассматривал косые вершинные фигуры, которые создавали новые четырёхмерные правильные многогранники, а много позднее Бранко Грюнбаум рассматривал правильные косые грани.
rdf:langString 在幾何學中,扭歪多面體(英語:Skew polyhedron)是指頂點、邊或面並非全部位於同一個三維空間中的多面體,即扭歪多邊形的高一維類比,因此其無法找到一個唯一的內部區域以及其體積。 正扭歪多面體代表每個面全等、每條邊等長、每個角都相等的扭歪多面體,是一系列可能具有非平面的面或頂點圖。考克斯特的研究著重於具有扭歪頂點圖新的四維多面體,後期多由研究有扭歪面的形狀。 具有無限多個面的扭歪多面體稱為扭歪無限面體。除了扭歪無限面體之外的扭歪多面體僅能存在於四維或以上的空間。
xsd:nonNegativeInteger 14010

data from the linked data cloud