Ramsey cardinal
http://dbpedia.org/resource/Ramsey_cardinal an entity of type: WikicatLargeCardinals
En matematiko, kardinalo preskaŭ de Ramsey estas certa speco de . Formale, kardinalo κ estas kardinalo preskaŭ de Ramsey se kaj nur se por ĉiu funkcio f: [κ] < ω → {0, 1} (kun [κ] < ω signifanta la aron de ĉiuj finiaj subaroj de κ) kaj por ĉiu λ < κ, estas aro de orda speco λ kiu estas por f.
rdf:langString
En mathématiques, et plus précisément en théorie des ensembles, un cardinal de Ramsey est un type de grand cardinal défini par Paul Erdős et András Hajnal, et nommé ainsi en référence à la théorie de Ramsey.
rdf:langString
In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by and named after Frank P. Ramsey, whose theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize to the uncountable case. Let [κ]<ω denote the set of all finite subsets of κ. A cardinal number κ is called Ramsey if, for every function f: [κ]<ω → {0, 1} f: [κ]<ω → {0, 1} The existence of any of these kinds of Ramsey cardinal is sufficient to prove the existence of 0#, or indeed that every set with rank less than κ has a sharp. f: [κ]<ω → {0, 1}
rdf:langString
rdf:langString
Kardinalo preskaŭ de Ramsey
rdf:langString
Cardinal de Ramsey
rdf:langString
Ramsey cardinal
xsd:integer
326533
xsd:integer
1119558071
rdf:langString
En matematiko, kardinalo preskaŭ de Ramsey estas certa speco de . Formale, kardinalo κ estas kardinalo preskaŭ de Ramsey se kaj nur se por ĉiu funkcio f: [κ] < ω → {0, 1} (kun [κ] < ω signifanta la aron de ĉiuj finiaj subaroj de κ) kaj por ĉiu λ < κ, estas aro de orda speco λ kiu estas por f.
rdf:langString
In mathematics, a Ramsey cardinal is a certain kind of large cardinal number introduced by and named after Frank P. Ramsey, whose theorem establishes that ω enjoys a certain property that Ramsey cardinals generalize to the uncountable case. Let [κ]<ω denote the set of all finite subsets of κ. A cardinal number κ is called Ramsey if, for every function f: [κ]<ω → {0, 1} there is a set A of cardinality κ that is homogeneous for f. That is, for every n, the function f is constant on the subsets of cardinality n from A. A cardinal κ is called ineffably Ramsey if A can be chosen to be a stationary subset of κ. A cardinal κ is called virtually Ramsey if for every function f: [κ]<ω → {0, 1} there is C, a closed and unbounded subset of κ, so that for every λ in C of uncountable cofinality, there is an unbounded subset of λ that is homogenous for f; slightly weaker is the notion of almost Ramsey where homogenous sets for f are required of order type λ, for every λ < κ. The existence of any of these kinds of Ramsey cardinal is sufficient to prove the existence of 0#, or indeed that every set with rank less than κ has a sharp. Every measurable cardinal is a Ramsey cardinal, and every Ramsey cardinal is a Rowbottom cardinal. A property intermediate in strength between Ramseyness and measurability is existence of a κ-complete normal non-principal ideal I on κ such that for every A ∉ I and for every function f: [κ]<ω → {0, 1} there is a set B ⊂ A not in I that is homogeneous for f. This is strictly stronger than κ being ineffably Ramsey. The existence of a Ramsey cardinal implies the existence of 0# and this in turn implies the falsity of the Axiom of Constructibility of Kurt Gödel.
rdf:langString
En mathématiques, et plus précisément en théorie des ensembles, un cardinal de Ramsey est un type de grand cardinal défini par Paul Erdős et András Hajnal, et nommé ainsi en référence à la théorie de Ramsey.
xsd:nonNegativeInteger
3368