Radical of a ring
http://dbpedia.org/resource/Radical_of_a_ring an entity of type: Abstraction100002137
In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring. The first example of a radical was the nilradical introduced by , based on a suggestion of . In the next few years several other radicals were discovered, of which the most important example is the Jacobson radical. The general theory of radicals was defined independently by (Amitsur , , ) and .
rdf:langString
環論という数学の分野において、環の根基 (radical of a ring) は環の「悪い」元からなるイデアルである。 根基の最初の例は冪零根基であった。これは のサジェスチョンに基づいて、 で導入された。次の数年間でいくつかの他の根基が発見された。それらのうち最も重要な例はジャコブソン根基である。根基の一般論は (Amitsur , , ) と によって独立に定義された。
rdf:langString
Na teoria dos anéis, um ramo da matemática, o radical de um anel é um ideal de elementos "não bons" do anel. O primeiro exemplo de radical foi o introduzido por Köthe (1930), baseado na sugestão de Wedderburn (1908). Nos anos seguintes, vários outros radicais foram descobertos, dos quais o exemplo mais importante é o . A teoria geral dos radicais foi definida independentemente por (Amitsur 1952 , 1954 , 1954b ) e (1953).
rdf:langString
rdf:langString
環の根基
rdf:langString
Radical of a ring
rdf:langString
Radical de um anel
xsd:integer
372242
xsd:integer
1116294154
rdf:langString
V.A.
rdf:langString
r/r077130
rdf:langString
Amitsur
rdf:langString
Andrunakievich
rdf:langString
Radical of ring and algebras
xsd:integer
1952
1954
rdf:langString
In ring theory, a branch of mathematics, a radical of a ring is an ideal of "not-good" elements of the ring. The first example of a radical was the nilradical introduced by , based on a suggestion of . In the next few years several other radicals were discovered, of which the most important example is the Jacobson radical. The general theory of radicals was defined independently by (Amitsur , , ) and .
rdf:langString
環論という数学の分野において、環の根基 (radical of a ring) は環の「悪い」元からなるイデアルである。 根基の最初の例は冪零根基であった。これは のサジェスチョンに基づいて、 で導入された。次の数年間でいくつかの他の根基が発見された。それらのうち最も重要な例はジャコブソン根基である。根基の一般論は (Amitsur , , ) と によって独立に定義された。
rdf:langString
Na teoria dos anéis, um ramo da matemática, o radical de um anel é um ideal de elementos "não bons" do anel. O primeiro exemplo de radical foi o introduzido por Köthe (1930), baseado na sugestão de Wedderburn (1908). Nos anos seguintes, vários outros radicais foram descobertos, dos quais o exemplo mais importante é o . A teoria geral dos radicais foi definida independentemente por (Amitsur 1952 , 1954 , 1954b ) e (1953).
xsd:nonNegativeInteger
9250