R-factor (crystallography)

http://dbpedia.org/resource/R-factor_(crystallography)

In crystallography, the R-factor (sometimes called residual factor or reliability factor or the R-value or RWork) is a measure of the agreement between the crystallographic model and the experimental X-ray diffraction data. In other words, it is a measure of how well the refined structure predicts the observed data. The value is also sometimes called the discrepancy index, as it mathematically describes the difference between the experimental observations and the ideal calculated values. It is defined by the following equation: . rdf:langString
Il fattore R o fattore-R in cristallografia (chiamato anche fattore residuale o fattore di affidabilità o valore-R o indice R o ancora RWork) è la misura della discrepanza fra il modello cristallografico e i dati sperimentali ottenuti con la diffrazione dei raggi X. In altre parole, è una misura di quanto bene la struttura raffinata riesca a prevedere i dati osservati. È definito dalla seguente equazione: I cristallografi utilizzano anche il fattore-RFree per descrivere la qualità di un modello. rdf:langString
R-фактор (называемый иногда остаточным (англ. residual) или фактором достоверности(англ. reliability)) — в кристаллографии мера согласованности между кристаллографической моделью и экспериментальным массивом рентгеновских данных. Иными словами, является оценкой того насколько расшифрованная структура способна предсказать наблюдаемые результаты. Вычисляется по формуле: rdf:langString
rdf:langString Fattore R
rdf:langString R-factor (crystallography)
rdf:langString R-фактор
xsd:integer 6004559
xsd:integer 1090930546
rdf:langString In crystallography, the R-factor (sometimes called residual factor or reliability factor or the R-value or RWork) is a measure of the agreement between the crystallographic model and the experimental X-ray diffraction data. In other words, it is a measure of how well the refined structure predicts the observed data. The value is also sometimes called the discrepancy index, as it mathematically describes the difference between the experimental observations and the ideal calculated values. It is defined by the following equation: where F is the so-called structure factor and the sum extends over all the reflections of X-rays measured and their calculated counterparts respectively. The structure factor is closely related to the intensity of the reflection it describes: . The minimum possible value is zero, indicating perfect agreement between experimental observations and the structure factors predicted from the model. There is no theoretical maximum, but in practice, values are considerably less than one even for poor models, provided the model includes a suitable scale factor. Random experimental errors in the data contribute to even for a perfect model, and these have more leverage when the data are weak or few, such as for a low-resolution data set. Model inadequacies such as incorrect or missing parts and unmodeled disorder are the other main contributors to , making it useful to assess the progress and final result of a crystallographic model refinement. For large molecules, the R-factor usually ranges between 0.6 (when computed for a random model and against an experimental data set) and 0.2 (for example for a well refined macro-molecular model at a resolution of 2.5 Ångström). Small molecules (up to ca. 1000 atoms) usually form better-ordered crystals than large molecules, and thus it is possible to attain lower R-factors. In the Cambridge Structural Database of small-molecule structures, more than 95% of the 500,000+ crystals have an R-factor lower than 0.15, and 9.5% have an R-factor lower than 0.03. Crystallographers also use the Free R-Factor to assess possible overmodeling of the data. is computed according to the same formula given above, but on a small, random sample of data that are set aside for the purpose and never included in the refinement. will always be greater than because the model is not fitted to the reflections that contribute to , but the two statistics should be similar because a correct model should predict all the data with uniform accuracy. If the two statistics differ significantly then that indicates the model has been over-parameterized, so that to some extent it predicts not the ideal error-free data for the correct model, but rather the error-afflicted data actually observed. The quantities and are similarly used to describe the internal agreement of measurements in a crystallographic data set.
rdf:langString Il fattore R o fattore-R in cristallografia (chiamato anche fattore residuale o fattore di affidabilità o valore-R o indice R o ancora RWork) è la misura della discrepanza fra il modello cristallografico e i dati sperimentali ottenuti con la diffrazione dei raggi X. In altre parole, è una misura di quanto bene la struttura raffinata riesca a prevedere i dati osservati. È definito dalla seguente equazione: dove F è il cosiddetto e la somma si estende rispettivamente a tutte le riflessioni misurate ed alle controparti calcolate. Il fattore di struttura F è strettamente correlato all'intensità delle riflessioni che descrive: Per le molecole di grandi dimensioni, il fattore-R di solito è compreso fra 0,6 (quando un insieme casuale di riflessioni viene paragonato con un modello dato) e 0,2 (per esempio per un modello di macromolecola ben rifinito alla risoluzione di 2,5 Ångström). Le molecole più piccole (fino a 300 atomi) solitamente formano cristalli più ordinati che le molecole grandi, è quindi possibile raggiungere dei fattori-R più bassi. Nel più del 95% degli oltre cinquecentomila cristalli censiti ha un fattore R minore di 0,15 e il 9,5% ha un fattore-R minore di 0,03. I cristallografi utilizzano anche il fattore-RFree per descrivere la qualità di un modello. I valori e sono usati analogamente per descrivere l'accordo interno delle misure di un insieme di dati cristallografico.
rdf:langString R-фактор (называемый иногда остаточным (англ. residual) или фактором достоверности(англ. reliability)) — в кристаллографии мера согласованности между кристаллографической моделью и экспериментальным массивом рентгеновских данных. Иными словами, является оценкой того насколько расшифрованная структура способна предсказать наблюдаемые результаты. Вычисляется по формуле: где F — структурный фактор, а суммирование ведется по всем наблюдаемым отражениям рентгеновского излучения и по их вычисленным противоположностям (с индексами Миллера -h, -k, -l). Структурный фактор F связан с интенсивностью отражения приблизительно как: Для больших молекул, R-фактор обычно находится в пределах от 0.6 (когда сравнивается случайный набор отражений с данной моделью) и 0.2 (для хорошо уточненных макромолекул, снятых с высоким разрешением). Маленькие молекулы (до 300 атомов) обычно образуют более упорядоченные кристаллы, чем большие, что позволяет добиться меньших значений R-фактора. В (en:Cambridge Structural Database) более 95 % из 400,000+ кристаллов имеют R-фактор менее 0,15 и 9,5 % менее 0.03.
xsd:nonNegativeInteger 4191

data from the linked data cloud