Quasi-isometry
http://dbpedia.org/resource/Quasi-isometry an entity of type: Agent
Der Begriff der Quasi-Isometrie dient in der Mathematik dazu, die „grobe“ globale Geometrie metrischer Räume zu untersuchen. Er spielt in zahlreichen Gebieten der Geometrie, Analysis und geometrischen Gruppentheorie eine wichtige Rolle, etwa in der Theorie der hyperbolischen Gruppen oder in Beweisen von Starrheitssätzen.
rdf:langString
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.
rdf:langString
수학에서 준등거리사상(영어: quasi-isometry), 준등거리동형사상, 준등거리변환, 준거리동형사상 혹은 준등장사상은 거리 공간의 일정한 집합 위에 줄 수 있는 동치관계로서, (coarse structure)를 탐구하기 위해 일반적인 등거리사상에서 약간의 세부사항을 무시하는 것이다. 미하일 그로모프의 에서 중요한 역할을 한다.
rdf:langString
擬等距同構是數學上度量空間之間的等價關係,著重在度量空間上的,而忽略掉小尺寸上的細節。這樣有如從遠處觀看度量空間,看到其大概,而察看不出細處的分別。
rdf:langString
Квазиизометрия — обобщение понятия изометрии на метрических пространствах, игнорирующая конечные отклонения, как абсолютные, так и относительные. Это понятие особенно важно в геометрической теории групп. Введено Михаилом Громовым.
rdf:langString
rdf:langString
Quasi-Isometrie
rdf:langString
준등거리사상
rdf:langString
Quasi-isometry
rdf:langString
Квазиизометрия
rdf:langString
擬等距同構
rdf:langString
Квазіізометрія
xsd:integer
12747259
xsd:integer
1102215466
rdf:langString
Der Begriff der Quasi-Isometrie dient in der Mathematik dazu, die „grobe“ globale Geometrie metrischer Räume zu untersuchen. Er spielt in zahlreichen Gebieten der Geometrie, Analysis und geometrischen Gruppentheorie eine wichtige Rolle, etwa in der Theorie der hyperbolischen Gruppen oder in Beweisen von Starrheitssätzen.
rdf:langString
In mathematics, a quasi-isometry is a function between two metric spaces that respects large-scale geometry of these spaces and ignores their small-scale details. Two metric spaces are quasi-isometric if there exists a quasi-isometry between them. The property of being quasi-isometric behaves like an equivalence relation on the class of metric spaces. The concept of quasi-isometry is especially important in geometric group theory, following the work of Gromov.
rdf:langString
수학에서 준등거리사상(영어: quasi-isometry), 준등거리동형사상, 준등거리변환, 준거리동형사상 혹은 준등장사상은 거리 공간의 일정한 집합 위에 줄 수 있는 동치관계로서, (coarse structure)를 탐구하기 위해 일반적인 등거리사상에서 약간의 세부사항을 무시하는 것이다. 미하일 그로모프의 에서 중요한 역할을 한다.
rdf:langString
擬等距同構是數學上度量空間之間的等價關係,著重在度量空間上的,而忽略掉小尺寸上的細節。這樣有如從遠處觀看度量空間,看到其大概,而察看不出細處的分別。
rdf:langString
Квазиизометрия — обобщение понятия изометрии на метрических пространствах, игнорирующая конечные отклонения, как абсолютные, так и относительные. Это понятие особенно важно в геометрической теории групп. Введено Михаилом Громовым.
xsd:nonNegativeInteger
15009