Quarter cubic honeycomb
http://dbpedia.org/resource/Quarter_cubic_honeycomb
En geometrio, la kvarona kuba kahelaro estas unuforma kahelaro de eŭklida 3-spaco konsistanta el kvaredroj kaj senpintigitaj kvaredroj. Ĝi estas vertico-transitiva kun 6 senpintigitaj kvaredroj kaj 2 kvaredroj ĉirkaŭ ĉiu vertico. Ĝi estas unu el 28 konveksaj unuformaj kahelaroj de eŭklida 3-spaco. La edroj de ĉi tiu kahelaro formas kvar familiojn de paralelaj ebenoj, kaj en ĉiu ebeno de ĉiu familio la lateroj kaj edroj formas tri-seslateran kahelaron (3.6.3.6). Ĝia vertica figuro estas izocela malprismo: du egallateraj trianguloj kunigitaj per ses izocelaj trianguloj.
rdf:langString
The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb. It is vertex-transitive with 6 truncated tetrahedra and 2 tetrahedra around each vertex. It is one of the 28 convex uniform honeycombs.
rdf:langString
rdf:langString
Kvarona kuba kahelaro
rdf:langString
Quarter cubic honeycomb
xsd:integer
3757507
xsd:integer
1038780809
rdf:langString
En geometrio, la kvarona kuba kahelaro estas unuforma kahelaro de eŭklida 3-spaco konsistanta el kvaredroj kaj senpintigitaj kvaredroj. Ĝi estas vertico-transitiva kun 6 senpintigitaj kvaredroj kaj 2 kvaredroj ĉirkaŭ ĉiu vertico. Ĝi estas unu el 28 konveksaj unuformaj kahelaroj de eŭklida 3-spaco. La edroj de ĉi tiu kahelaro formas kvar familiojn de paralelaj ebenoj, kaj en ĉiu ebeno de ĉiu familio la lateroj kaj edroj formas tri-seslateran kahelaron (3.6.3.6). Ĝia vertica figuro estas izocela malprismo: du egallateraj trianguloj kunigitaj per ses izocelaj trianguloj.
rdf:langString
The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb. It is vertex-transitive with 6 truncated tetrahedra and 2 tetrahedra around each vertex. A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions. Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space. It is one of the 28 convex uniform honeycombs. The faces of this honeycomb's cells form four families of parallel planes, each with a 3.6.3.6 tiling. Its vertex figure is an isosceles antiprism: two equilateral triangles joined by six isosceles triangles. John Horton Conway calls this honeycomb a truncated tetrahedrille, and its dual oblate cubille. The vertices and edges represent a Kagome lattice in three dimensions, which is the pyrochlore lattice.
xsd:nonNegativeInteger
8104