Quantum Boltzmann equation

http://dbpedia.org/resource/Quantum_Boltzmann_equation

L'équation de Boltzmann quantique, également connue sous le nom d'équation d'Uehling-Uhlenbeck, est l'extension de l'équation de Boltzmann classique qui donne l'évolution temporelle hors d'équilibre d'un système de particules quantiques en interaction. L'équation de Boltzmann quantique se distingue formellement de celle classique par le terme de collision, qui donne l'évolution de la distribution de quantité de mouvement d'un gaz localement homogène causée par les collisions binaires entre les molécules ; ce terme de collision, qui prend en compte des contraintes de la mécanique quantique, a été initialement formulé par Lothar Nordheim (1928), et par (en) et George Uhlenbeck (1933). rdf:langString
The quantum Boltzmann equation, also known as the Uehling-Uhlenbeck equation, is the quantum mechanical modification of the Boltzmann equation, which gives the nonequilibrium time evolution of a gas of quantum-mechanically interacting particles. Typically, the quantum Boltzmann equation is given as only the “collision term” of the full Boltzmann equation, giving the change of the momentum distribution of a locally homogeneous gas, but not the drift and diffusion in space. It was originally formulated by L.W. Nordheim (1928), and by and E. A. Uehling and George Uhlenbeck (1933). rdf:langString
rdf:langString Équation de Boltzmann quantique
rdf:langString Quantum Boltzmann equation
xsd:integer 54672540
xsd:integer 1093630447
rdf:langString L'équation de Boltzmann quantique, également connue sous le nom d'équation d'Uehling-Uhlenbeck, est l'extension de l'équation de Boltzmann classique qui donne l'évolution temporelle hors d'équilibre d'un système de particules quantiques en interaction. L'équation de Boltzmann quantique se distingue formellement de celle classique par le terme de collision, qui donne l'évolution de la distribution de quantité de mouvement d'un gaz localement homogène causée par les collisions binaires entre les molécules ; ce terme de collision, qui prend en compte des contraintes de la mécanique quantique, a été initialement formulé par Lothar Nordheim (1928), et par (en) et George Uhlenbeck (1933).
rdf:langString The quantum Boltzmann equation, also known as the Uehling-Uhlenbeck equation, is the quantum mechanical modification of the Boltzmann equation, which gives the nonequilibrium time evolution of a gas of quantum-mechanically interacting particles. Typically, the quantum Boltzmann equation is given as only the “collision term” of the full Boltzmann equation, giving the change of the momentum distribution of a locally homogeneous gas, but not the drift and diffusion in space. It was originally formulated by L.W. Nordheim (1928), and by and E. A. Uehling and George Uhlenbeck (1933). In full generality (including the p-space and x-space drift terms, which are often neglected) the equation is represented analogously to the Boltzmann equation. where represents an externally applied potential acting on the gas' p-space distribution and is the collision operator, accounting for the interactions between the gas particles. The quantum mechanics must be represented in the exact form of , which depends on the physics of the system to be modeled. The quantum Boltzmann equation gives irreversible behavior, and therefore an arrow of time; that is, after a long enough time it gives an equilibrium distribution which no longer changes. Although quantum mechanics is microscopically time-reversible, the quantum Boltzmann equation gives irreversible behavior because phase information is discarded only the average occupation number of the quantum states is kept. The solution of the quantum Boltzmann equation is therefore a good approximation to the exact behavior of the system on time scales short compared to the Poincaré recurrence time, which is usually not a severe limitation, because the Poincaré recurrence time can be many times the age of the universe even in small systems. The quantum Boltzmann equation has been verified by direct comparison to time-resolved experimental measurements, and in general has found much use in semiconductor optics. For example, the energy distribution of a gas of excitons as a function of time (in picoseconds), measured using a streak camera, has been shown to approach an equilibrium Maxwell-Boltzmann distribution.
xsd:nonNegativeInteger 6701

data from the linked data cloud