Proof complexity

http://dbpedia.org/resource/Proof_complexity an entity of type: Thing

Em ciência da computação, complexidade de prova é a medida da eficiência dos métodos de prova de teoremas automatizados que é baseado no tamanho das provas que produzem. Os métodos para provar por contradição na lógica proposicional são os mais analisados, Os dois principais problemas considerados na complexidade de prova são se um método de prova pode produzir uma prova polinomial para toda fórmula inconsistente, e se as provas produzidas por um método são sempre de tamanho semelhante a aquelas produzidas por outro método. rdf:langString
En informatique théorique, la complexité des preuves ou complexité des démonstrations est le domaine qui étudie les ressources nécessaires pour prouver ou réfuter un énoncé mathématique. Le démarche classique du domaine est de fixer une sorte de preuve, puis de montrer des bornes sur la longueur des preuves pour certains énoncés. La sorte de preuve peut être d'origine logique, comme la déduction naturelle, le calcul des séquents, des systèmes basés sur la règle de résolution, ou plus combinatoire, comme l'algorithme DPLL et la méthode des plans sécants. Pour chacun il faut définir une notion de longueur pertinente. rdf:langString
In logic and theoretical computer science, and specifically proof theory and computational complexity theory, proof complexity is the field aiming to understand and analyse the computational resources that are required to prove or refute statements. Research in proof complexity is predominantly concerned with proving proof-length lower and upper bounds in various propositional proof systems. For example, among the major challenges of proof complexity is showing that the Frege system, the usual propositional calculus, does not admit polynomial-size proofs of all tautologies. Here the size of the proof is simply the number of symbols in it, and a proof is said to be of polynomial size if it is polynomial in the size of the tautology it proves. rdf:langString
rdf:langString Complexité des preuves
rdf:langString Proof complexity
rdf:langString Complexidade de prova
xsd:integer 2801284
xsd:integer 1091328366
rdf:langString En informatique théorique, la complexité des preuves ou complexité des démonstrations est le domaine qui étudie les ressources nécessaires pour prouver ou réfuter un énoncé mathématique. Le démarche classique du domaine est de fixer une sorte de preuve, puis de montrer des bornes sur la longueur des preuves pour certains énoncés. La sorte de preuve peut être d'origine logique, comme la déduction naturelle, le calcul des séquents, des systèmes basés sur la règle de résolution, ou plus combinatoire, comme l'algorithme DPLL et la méthode des plans sécants. Pour chacun il faut définir une notion de longueur pertinente. Le domaine est lié à la théorie de la complexité et aux assistants de preuve. Il a aussi de fortes relations avec les circuits booléens.
rdf:langString In logic and theoretical computer science, and specifically proof theory and computational complexity theory, proof complexity is the field aiming to understand and analyse the computational resources that are required to prove or refute statements. Research in proof complexity is predominantly concerned with proving proof-length lower and upper bounds in various propositional proof systems. For example, among the major challenges of proof complexity is showing that the Frege system, the usual propositional calculus, does not admit polynomial-size proofs of all tautologies. Here the size of the proof is simply the number of symbols in it, and a proof is said to be of polynomial size if it is polynomial in the size of the tautology it proves. Systematic study of proof complexity began with the work of Stephen Cook and (1979) who provided the basic definition of a propositional proof system from the perspective of computational complexity. Specifically Cook and Reckhow observed that proving proof size lower bounds on stronger and stronger propositional proof systems can be viewed as a step towards separating NP from coNP (and thus P from NP), since the existence of a propositional proof system that admits polynomial size proofs for all tautologies is equivalent to NP=coNP. Contemporary proof complexity research draws ideas and methods from many areas in computational complexity, algorithms and mathematics. Since many important algorithms and algorithmic techniques can be cast as proof search algorithms for certain proof systems, proving lower bounds on proof sizes in these systems implies run-time lower bounds on the corresponding algorithms. This connects proof complexity to more applied areas such as SAT solving. Mathematical logic can also serve as a framework to study propositional proof sizes. First-order theories and, in particular, weak fragments of Peano arithmetic, which come under the name of bounded arithmetic, serve as uniform versions of propositional proof systems and provide further background for interpreting short propositional proofs in terms of various levels of feasible reasoning.
rdf:langString Em ciência da computação, complexidade de prova é a medida da eficiência dos métodos de prova de teoremas automatizados que é baseado no tamanho das provas que produzem. Os métodos para provar por contradição na lógica proposicional são os mais analisados, Os dois principais problemas considerados na complexidade de prova são se um método de prova pode produzir uma prova polinomial para toda fórmula inconsistente, e se as provas produzidas por um método são sempre de tamanho semelhante a aquelas produzidas por outro método.
xsd:nonNegativeInteger 31293

data from the linked data cloud