Projective tensor product
http://dbpedia.org/resource/Projective_tensor_product an entity of type: Thing
The strongest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map (defined by sending to ) continuous is called the projective topology or the π-topology. When is endowed with this topology then it is denoted by and called the projective tensor product of and
rdf:langString
Das projektive Tensorprodukt ist eine Erweiterung der in der Mathematik betrachteten Tensorprodukte von Vektorräumen auf den Fall, dass zusätzlich Topologien auf den Vektorräumen vorhanden sind. In dieser Situation liegt es nahe, auch auf dem Tensorprodukt der Räume eine Topologie erklären zu wollen. Unter den vielen Möglichkeiten dies zu tun sind das injektive Tensorprodukt und das hier zu behandelnde projektive Tensorprodukt natürliche Wahlen.
rdf:langString
rdf:langString
Projektives Tensorprodukt
rdf:langString
Projective tensor product
rdf:langString
Theorem
xsd:integer
63566617
xsd:integer
1114476549
rdf:langString
Grothendieck
rdf:langString
Das projektive Tensorprodukt ist eine Erweiterung der in der Mathematik betrachteten Tensorprodukte von Vektorräumen auf den Fall, dass zusätzlich Topologien auf den Vektorräumen vorhanden sind. In dieser Situation liegt es nahe, auch auf dem Tensorprodukt der Räume eine Topologie erklären zu wollen. Unter den vielen Möglichkeiten dies zu tun sind das injektive Tensorprodukt und das hier zu behandelnde projektive Tensorprodukt natürliche Wahlen. Die Untersuchung des projektiven Tensorproduktes lokalkonvexer Räume geht auf Alexander Grothendieck zurück.Einige Resultate über Banachräume wurden zuvor von Robert Schatten erzielt. Zunächst wird der leichter zugängliche Fall der normierten Räume und Banachräume besprochen, anschließend wird auf die Verallgemeinerungen in der Theorie der lokalkonvexen Räume eingegangen.
rdf:langString
The strongest locally convex topological vector space (TVS) topology on the tensor product of two locally convex TVSs, making the canonical map (defined by sending to ) continuous is called the projective topology or the π-topology. When is endowed with this topology then it is denoted by and called the projective tensor product of and
rdf:langString
Let and be Hilbert spaces and endow with the trace-norm. When the space of compact linear operators is equipped with the operator norm then its dual is and its bidual is the space of all continuous linear operators
rdf:langString
Let and be metrizable locally convex TVSs and let Then is the sum of an absolutely convergent series
where and and are null sequences in and respectively.
rdf:langString
The canonical embedding becomes an embedding of topological vector spaces when is given the projective topology and furthermore, its range is dense in its codomain. If is a completion of then the continuous extension of this embedding is an isomorphism of TVSs. So in particular, if is complete then is canonically isomorphic to
rdf:langString
Let and be locally convex TVSs with nuclear. Assume that both and are Fréchet spaces or else that they are both DF-spaces. Then:
# The strong dual of can be identified with ;
# The bidual of can be identified with ;
# If in addition is reflexive then is a reflexive space;
# Every separately continuous bilinear form on is continuous;
# The strong dual of can be identified with so in particular if is reflexive then so is
rdf:langString
Let and be Fréchet spaces and let be a balanced open neighborhood of the origin in . Let be a compact subset of the convex balanced hull of There exists a compact subset of the unit ball in and sequences and contained in and respectively, converging to the origin such that for every there exists some such that
xsd:nonNegativeInteger
50921