Principles of Mathematical Logic

http://dbpedia.org/resource/Principles_of_Mathematical_Logic an entity of type: WikicatLogicBooks

Les Principes de logique théorique est un ouvrage de logique écrit en 1928 par Ackermann et Hilbert. Il s'agit du premier livre qui présente de façon élémentaire et rigoureuse ce qui est maintenant appelé logique du premier ordre. rdf:langString
Principles of Mathematical Logic is the 1950 American translation of the 1938 second edition of David Hilbert's and Wilhelm Ackermann's classic text Grundzüge der theoretischen Logik, on elementary mathematical logic. The 1928 first edition thereof is considered the first elementary text clearly grounded in the formalism now known as first-order logic (FOL). Hilbert and Ackermann also formalized FOL in a way that subsequently achieved canonical status. FOL is now a core formalism of mathematical logic, and is presupposed by contemporary treatments of Peano arithmetic and nearly all treatments of axiomatic set theory. rdf:langString
"Principles of Mathematical Logic" é a tradução Americana de 1950 da segunda edição de 1938 do clássico texto de David Hilbert e Wilhelm Ackermann, Grundzüge der theoretischen Logik, sobre lógica matemática elementar. A primeira de edição de 1928 é o primeiro texto elementar claramente embasado no formalismo agora conhecido como lógica de primeira-ordem. Hilbert e Ackermann também formalizaram a lógica de primeira-ordem de forma que posteriormente atingiu um status de canônico. A lógica de primeira-ordem está no centro do formalismo da lógica matemática, e é pressuposta por muitas abordagens contemporâneas da aritmética de Peano e quase todas as abordagens da teoria axiomática de conjuntos. rdf:langString
rdf:langString Principes de logique théorique
rdf:langString Principles of Mathematical Logic
rdf:langString Principles of Mathematical Logic
xsd:integer 2134047
xsd:integer 1027030933
rdf:langString Les Principes de logique théorique est un ouvrage de logique écrit en 1928 par Ackermann et Hilbert. Il s'agit du premier livre qui présente de façon élémentaire et rigoureuse ce qui est maintenant appelé logique du premier ordre.
rdf:langString Principles of Mathematical Logic is the 1950 American translation of the 1938 second edition of David Hilbert's and Wilhelm Ackermann's classic text Grundzüge der theoretischen Logik, on elementary mathematical logic. The 1928 first edition thereof is considered the first elementary text clearly grounded in the formalism now known as first-order logic (FOL). Hilbert and Ackermann also formalized FOL in a way that subsequently achieved canonical status. FOL is now a core formalism of mathematical logic, and is presupposed by contemporary treatments of Peano arithmetic and nearly all treatments of axiomatic set theory. The 1928 edition included a clear statement of the Entscheidungsproblem (decision problem) for FOL, and also asked whether that logic was complete (i.e., whether all semantic truths of FOL were theorems derivable from the FOL axioms and rules). The former problem was answered in the negative first by Alonzo Church and independently by Alan Turing in 1936. The latter was answered affirmatively by Kurt Gödel in 1929. In its description of set theory, mention is made of Russell's paradox and the Liar paradox (page 145). Contemporary notation for logic owes more to this text than it does to the notation of Principia Mathematica, long popular in the English speaking world.
rdf:langString "Principles of Mathematical Logic" é a tradução Americana de 1950 da segunda edição de 1938 do clássico texto de David Hilbert e Wilhelm Ackermann, Grundzüge der theoretischen Logik, sobre lógica matemática elementar. A primeira de edição de 1928 é o primeiro texto elementar claramente embasado no formalismo agora conhecido como lógica de primeira-ordem. Hilbert e Ackermann também formalizaram a lógica de primeira-ordem de forma que posteriormente atingiu um status de canônico. A lógica de primeira-ordem está no centro do formalismo da lógica matemática, e é pressuposta por muitas abordagens contemporâneas da aritmética de Peano e quase todas as abordagens da teoria axiomática de conjuntos. A edição de 1928 inclui uma declaração clara do Entscheidungsproblem (Problema de decisão) para a lógica de primeira-ordem, e também pergunta se a lógica é Completa(i.e., se todas as verdades semânticas da lógica de primeira-ordem são teoremas derivados dos axiomas e regras da lógica de primeira-ordem). O primeiro problema recebeu uma resposta negativa por Alonzo Church em 1936. O segundo recebeu uma resposta positiva por Kurt Gödel em 1929. O texto também tocou nas áreas de teoria dos conjuntos e álgebra relacional como forma de ir além da lógica de primeira-ordem. A notação contemporânea da lógica deve mais a este texto do que à notação de Principia Mathematica, muito popular no mundo da língua inglesa.
xsd:nonNegativeInteger 3555

data from the linked data cloud