Post-Newtonian expansion

http://dbpedia.org/resource/Post-Newtonian_expansion an entity of type: WikicatMathematicalMethodsInGeneralRelativity

In physics, precisely in the theory of general relativity, post-Newtonian expansions (PN expansions) are used for finding an approximate solution of the Einstein field equations for the metric tensor. The approximations are expanded in small parameters which express orders of deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher order terms can be added to increase accuracy, but for strong fields sometimes it is preferable to solve the complete equations numerically. This method is a common mark of effective field theories. In the limit, when the small parameters are equal to 0, the post-Newtonian expansion reduces to Newton's law of gravity. rdf:langString
后牛顿力学近似方法(英文:Post-Newtonian Approximation Method)是广义相对论中一种被广泛应用求解爱因斯坦场方程的近似方法。这种近似试图模仿牛顿力学的形式来解决较弱引力场的相对论问题。具体做法是对微小的牛顿力学量加以展开,可以选择展开的项有速度或者牛顿引力势,这实则是对相对论一种弱场低速的近似。 后牛顿力学近似方法在引力波天文学中得到了广泛的应用,最重要的用途是从理论上计算双星系统所辐射的引力波的波形。引力辐射对应着后牛顿近似方法展开至最低2.5阶,即展开至的2.5幂次方项,习惯记做2.5pN,一般研究中则要求后牛顿方法至少展开到3pN。3pN展开是后牛顿方法研究得比较成熟的近似,主要研究人员有Damour,Jaranowski和Schäfer采用广义相对论的ADM-哈密顿量形式,以及Andrade,Blanchet和Faye直接在谐振坐标下计算运动方程。这两种算法的结果在物理上被证明等价,为寻找来自双星系统的引力波信号提供了可信的模板。当前后牛顿展开近似的最高阶数为5.5pN,为大阪大学的佐佐木节(佐々木 節,罗马字Sasaki Misao)等人所得出 rdf:langString
Nell'ambito della teoria generale della relatività, le espansioni post-newtoniane (PN) o approssimazioni post-newtoniane sono metodi matematici utilizzati per trovare soluzioni approssimate delle equazioni di Einstein, mediante uno sviluppo in serie di potenze del tensore metrico. In particolare lo sviluppo è basato su due parametri: la velocità degli oggetti coinvolti, che deve essere trascurabile rispetto a quella della luce, e la costante gravitazionale G. Uno dei primi lavori usando questa tecnica fu quello di Einstein per calcolare la precessione del perielio di Mercurio. rdf:langString
ポスト・ニュートン展開(ポスト・ニュートンてんかい)またはポスト・ニュートニアン展開 (post‐Newtonian expansions)・ポスト・ニュートン近似 (post‐Newtonian approximation) は、一般相対性理論における近似の一つであり、弱い重力場を表現する場合に、アインシュタイン方程式をすべてのオーダーで解かずに、物質の速度 の光速度 に対する比 を展開パラメータとして、方程式・計量を展開する手法である。 例えば、太陽系では、重力ポテンシャルの大きさ は、 の単位系で、オーダー 程度であり、惑星の速さ はビリアル定理によって であるので、ポスト・ニュートン展開が十分良く適用できる。つまり、 ポスト・ニュートン近似された式を解くことによって、ほぼ正しい物理的描像が得られるので、一般相対性理論の式をきちんと解く必要がない。 高次の展開式は、非常に複雑になる。近年、アインシュタイン方程式をフルに数値計算することが可能になりつつあり、その際の計算結果の照合にも利用されるようになってきている。 より一般的に、太陽系などの弱い重力場での重力理論の検証のために、一般相対性理論だけではなく、他の重力理論の可能性も含めて計量を表現するPPN形式 (parametrized post-Newtonian formalism) もある。 rdf:langString
Постнью́тоновский формали́зм (ПН формали́зм) — это вычислительный инструмент, который позволяет получать решения нелинейных уравнений Эйнштейна для движущихся тел как ряды по формальному малому параметру, который ассоциируется с обратной величиной квадрата скорости света (точнее, скорости гравитации) . Первым членом таких рядов оказывается ньютонова теория гравитации, последующие её уточняют. О членах, содержащих скорость света в степени , говорят как о членах n/2-ПН порядка, например, гравитационное излучение появляется в 2,5ПН-порядке, то есть его члены впервые появляются при разложении до . rdf:langString
rdf:langString Espansione post-newtoniana
rdf:langString ポスト・ニュートン展開
rdf:langString Post-Newtonian expansion
rdf:langString Постньютоновский формализм
rdf:langString 后牛顿力学近似方法
xsd:integer 4383472
xsd:integer 1116292343
rdf:langString In physics, precisely in the theory of general relativity, post-Newtonian expansions (PN expansions) are used for finding an approximate solution of the Einstein field equations for the metric tensor. The approximations are expanded in small parameters which express orders of deviations from Newton's law of universal gravitation. This allows approximations to Einstein's equations to be made in the case of weak fields. Higher order terms can be added to increase accuracy, but for strong fields sometimes it is preferable to solve the complete equations numerically. This method is a common mark of effective field theories. In the limit, when the small parameters are equal to 0, the post-Newtonian expansion reduces to Newton's law of gravity.
rdf:langString ポスト・ニュートン展開(ポスト・ニュートンてんかい)またはポスト・ニュートニアン展開 (post‐Newtonian expansions)・ポスト・ニュートン近似 (post‐Newtonian approximation) は、一般相対性理論における近似の一つであり、弱い重力場を表現する場合に、アインシュタイン方程式をすべてのオーダーで解かずに、物質の速度 の光速度 に対する比 を展開パラメータとして、方程式・計量を展開する手法である。 例えば、太陽系では、重力ポテンシャルの大きさ は、 の単位系で、オーダー 程度であり、惑星の速さ はビリアル定理によって であるので、ポスト・ニュートン展開が十分良く適用できる。つまり、 ポスト・ニュートン近似された式を解くことによって、ほぼ正しい物理的描像が得られるので、一般相対性理論の式をきちんと解く必要がない。 近年、重力波 観測に絡んで、連星中性子星系・連星ブラックホール系の合体による重力波の波形やエネルギーを計算する手段として、精力的に計算が進められている。合体そのものの現象でなければ、高次のポスト・ニュートン展開で、ある程度の描像が得られるからである。重力波が放出されると、重力波自身が重力源となる輻射反作用力(radiation reaction)が発生する。この輻射反作用は、ポスト・ニュートン展開の2.5次から発生する。次数計算に、0.5という端数が登場するのは、上記のように、次数を で数えるからである。 高次の展開式は、非常に複雑になる。近年、アインシュタイン方程式をフルに数値計算することが可能になりつつあり、その際の計算結果の照合にも利用されるようになってきている。 より一般的に、太陽系などの弱い重力場での重力理論の検証のために、一般相対性理論だけではなく、他の重力理論の可能性も含めて計量を表現するPPN形式 (parametrized post-Newtonian formalism) もある。
rdf:langString Nell'ambito della teoria generale della relatività, le espansioni post-newtoniane (PN) o approssimazioni post-newtoniane sono metodi matematici utilizzati per trovare soluzioni approssimate delle equazioni di Einstein, mediante uno sviluppo in serie di potenze del tensore metrico. In particolare lo sviluppo è basato su due parametri: la velocità degli oggetti coinvolti, che deve essere trascurabile rispetto a quella della luce, e la costante gravitazionale G. Il caso limite di velocità nulla corrisponde alla teoria di gravitazione universale di Newton, a cui si aggiungono successivi termini perturbativi. Uno dei primi lavori usando questa tecnica fu quello di Einstein per calcolare la precessione del perielio di Mercurio. Un altro metodo simile è quello delle espansioni post-minkowskiane (PM), in cui si considerano solo le potenze di G.
rdf:langString Постнью́тоновский формали́зм (ПН формали́зм) — это вычислительный инструмент, который позволяет получать решения нелинейных уравнений Эйнштейна для движущихся тел как ряды по формальному малому параметру, который ассоциируется с обратной величиной квадрата скорости света (точнее, скорости гравитации) . Первым членом таких рядов оказывается ньютонова теория гравитации, последующие её уточняют. О членах, содержащих скорость света в степени , говорят как о членах n/2-ПН порядка, например, гравитационное излучение появляется в 2,5ПН-порядке, то есть его члены впервые появляются при разложении до . Сходимость рядов постньютоновского формализма представляет собой сложную математическую проблему. Постньютоновский формализм применим в случае слабых гравитационных полей, в сильных полях использование его проблематично из-за проблем сходимости, и обычно используется прямой вычислительный подход интегрирования уравнений Эйнштейна — численная относительность. Вариантом обобщения постньютоновского формализма служит параметризованный постньютоновский формализм, применяемый для тестирования предсказаний различных теорий гравитации в Солнечной системе и в системах тесных релятивистских двойных звёзд.
rdf:langString 后牛顿力学近似方法(英文:Post-Newtonian Approximation Method)是广义相对论中一种被广泛应用求解爱因斯坦场方程的近似方法。这种近似试图模仿牛顿力学的形式来解决较弱引力场的相对论问题。具体做法是对微小的牛顿力学量加以展开,可以选择展开的项有速度或者牛顿引力势,这实则是对相对论一种弱场低速的近似。 后牛顿力学近似方法在引力波天文学中得到了广泛的应用,最重要的用途是从理论上计算双星系统所辐射的引力波的波形。引力辐射对应着后牛顿近似方法展开至最低2.5阶,即展开至的2.5幂次方项,习惯记做2.5pN,一般研究中则要求后牛顿方法至少展开到3pN。3pN展开是后牛顿方法研究得比较成熟的近似,主要研究人员有Damour,Jaranowski和Schäfer采用广义相对论的ADM-哈密顿量形式,以及Andrade,Blanchet和Faye直接在谐振坐标下计算运动方程。这两种算法的结果在物理上被证明等价,为寻找来自双星系统的引力波信号提供了可信的模板。当前后牛顿展开近似的最高阶数为5.5pN,为大阪大学的佐佐木节(佐々木 節,罗马字Sasaki Misao)等人所得出
xsd:nonNegativeInteger 10080

data from the linked data cloud