Porteous formula
http://dbpedia.org/resource/Porteous_formula an entity of type: Organisation
En matemática, la fórmula de Porteus, introducida por Porteous (1971), es una expresión para la clases fundamental de una variedad de determinantes en términos de clases de Chern. & (1974) han proveído una versión más general.
rdf:langString
In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over projective space. Thom pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and Porteous found the polynomial in general. proved a more general version, and generalized it further.
rdf:langString
rdf:langString
Fórmula de Porteous
rdf:langString
Porteous formula
xsd:integer
34781467
xsd:integer
950880078
rdf:langString
En matemática, la fórmula de Porteus, introducida por Porteous (1971), es una expresión para la clases fundamental de una variedad de determinantes en términos de clases de Chern. & (1974) han proveído una versión más general.
rdf:langString
In mathematics, the Porteous formula, or Thom–Porteous formula, or Giambelli–Thom–Porteous formula, is an expression for the fundamental class of a degeneracy locus (or determinantal variety) of a morphism of vector bundles in terms of Chern classes. Giambelli's formula is roughly the special case when the vector bundles are sums of line bundles over projective space. Thom pointed out that the fundamental class must be a polynomial in the Chern classes and found this polynomial in a few special cases, and Porteous found the polynomial in general. proved a more general version, and generalized it further.
xsd:nonNegativeInteger
2627