Planar ternary ring

http://dbpedia.org/resource/Planar_ternary_ring an entity of type: Artifact100021939

数学における代数構造 (R, T) が空でない集合 R とその上の T: R3 → R の組として与えられるとき、三項系と呼ぶ。 は平面三項環(へいめんさんこうかん、英: planar ternary ring; PTR)または三項体 (Ternärkörper; ternary field) 特別な種類の三項系を座標として用いて射影平面を構成した。平面三項「環」は、加法と乗法の定められる環類似構造を持つが、厳密には必ずしも環ではない。 用語法には広くバリエーションがある。本項に言う平面三項環を文献によっては別の呼び方をするし、また本項の言うものの変種を平面三項環と呼ぶものもある。短く三項環と言うとき、平面三項環の意味で用いる場合もあれば、より一般の(あるいは別の)三項系の意味であるかもしれない。 rdf:langString
사영기하학에서 삼진환(三進環, 영어: ternary ring)은 사영 평면의 점의 일종의 좌표계를 구성할 수 있는 대수 구조이며, 하나의 3항 연산을 갖는다. rdf:langString
Ein Ternärkörper ist eine algebraische Struktur, die in der synthetischen Geometrie als Koordinatenbereich einer beliebigen affinen Ebene dient. Als Menge besteht der Ternärkörper dabei aus den Punkten einer fest gewählten Geraden der Ebene, nämlich der ersten Koordinatenachse des Koordinatensystems, das man auf dieser Ebene einführt. Auf dieser Punktmenge wird durch die Ternärkonstruktion eine dreistellige Verknüpfung definiert, mit der die Gerade die algebraische Struktur eines Ternärkörpers erhält. Umgekehrt gibt es zu jeder Struktur , die die Axiome eines Ternärkörpers erfüllt, eine affine Ebene, deren Punkte die Paare sind und deren Geraden sich als Lösungsmengen von Gleichungen in mit Hilfe der Ternärverknüpfung darstellen lassen. rdf:langString
In mathematics, an algebraic structure consisting of a non-empty set and a ternary mapping may be called a ternary system. A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation is defined by . Thus, we can think of a planar ternary ring as a generalization of a field where the ternary operation takes the place of both addition and multiplication. In effect, in computer architecture, this ternary operation is known, e.g., as the multiply–accumulate operation (MAC). rdf:langString
rdf:langString Ternärkörper
rdf:langString 平面三項環
rdf:langString 삼진환
rdf:langString Planar ternary ring
xsd:integer 4027813
xsd:integer 1114176430
rdf:langString Ein Ternärkörper ist eine algebraische Struktur, die in der synthetischen Geometrie als Koordinatenbereich einer beliebigen affinen Ebene dient. Als Menge besteht der Ternärkörper dabei aus den Punkten einer fest gewählten Geraden der Ebene, nämlich der ersten Koordinatenachse des Koordinatensystems, das man auf dieser Ebene einführt. Auf dieser Punktmenge wird durch die Ternärkonstruktion eine dreistellige Verknüpfung definiert, mit der die Gerade die algebraische Struktur eines Ternärkörpers erhält. Umgekehrt gibt es zu jeder Struktur , die die Axiome eines Ternärkörpers erfüllt, eine affine Ebene, deren Punkte die Paare sind und deren Geraden sich als Lösungsmengen von Gleichungen in mit Hilfe der Ternärverknüpfung darstellen lassen. Etwas salopp formuliert: Jede affine Ebene „ist“ eine zweidimensionale Ebene über einem Ternärkörper und zu jeder affinen Ebene gibt es bis auf Isomorphie genau einen Ternärkörper als Koordinatenmenge. Die Mächtigkeit des Ternärkörpers entspricht der Ordnung der zugehörigen affinen Ebene. Ist die affine Ebene eine affine Translationsebene, dann kann ihr Koordinatenternärkörper zu einem Quasikörper gemacht werden, für desarguesche Ebenen ist dies sogar ein Schiefkörper, für pappussche Ebenen ein Körper. Ein Ternärkörper, in dem die Ternärverknüpfung durch eine Addition und eine Multiplikation dargestellt werden kann, wird als linear bezeichnet. Erfüllt in einem linearen Ternärkörper die Addition das Assoziativgesetz, dann wird er als kartesische Gruppe bezeichnet. Quasikörper sind stets kartesische Gruppen. Einen Quasikörper, dessen Multiplikation assoziativ ist, nennt man Fastkörper. Wenn beide Distributivgesetze gelten, wird der Quasikörper in der Geometrie als Halbkörper bezeichnet. Alternativkörper sind stets solche Halbkörper, Schiefkörper sind stets Alternativkörper. Die hier beschriebenen Koordinatenbereiche, die in der synthetischen Geometrie als Koordinatenkörper bezeichnet werden, auch wenn sie nicht Körper im algebraischen Sinn sind, können auch zur Einführung von projektiven Koordinaten auf einer projektiven Ebene benutzt werden. Der Zusammenhang zwischen affinen und projektiven Schließungssätzen und den Folgerungen für die algebraische Struktur des Koordinatenbereichs der Ebenen, die den Schließungssatz erfüllen, wird im vorliegenden Artikel dargestellt und weiter unten im Abschnitt zusammengefasst. Bei der Klassifikation projektiver Ebenen stellt sich heraus, dass jeder Klasse von projektiven Ebenen (im Sinne der Klassifizierung nach Hanfried Lenz) eine Klasse von Koordinatenbereichen mit jeweils für diese Ebenenklasse charakteristischen Zusatzeigenschaften zugeordnet werden kann. Im vorliegenden Artikel werden Algebraisierungen von affinen Ebenen beschrieben, die auf einem Koordinatensystem beruhen, und die Verknüpfungen, die sich durch die geometrische Struktur auf einer Koordinatenachse ergeben. Ein anderer Zugang, der sich vor allem für nichtdesarguesche affine Translationsebenen als fruchtbar erweist, besteht darin, gewisse, nämlich die spurtreuen, Endomorphismen der Translationsgruppe algebraisch zu beschreiben. Dieser Ansatz führt bei desargueschen Ebenen zu einem Schiefkörper, der isomorph zu dem im vorliegenden Artikel beschriebenen Koordinatenschiefkörper ist.Dieser andere Zugang wird im Hauptartikel Affine Translationsebene beschrieben. Für eine synonyme Algebraisierung von affinen Ebenen, insbesondere der nichtdesargueschen, ohne dezidierte Auszeichnung eines Koordinatensystems wird auf den Hauptartikel Geometrische Relationenalgebra verwiesen.
rdf:langString In mathematics, an algebraic structure consisting of a non-empty set and a ternary mapping may be called a ternary system. A planar ternary ring (PTR) or ternary field is special type of ternary system used by Marshall Hall to construct projective planes by means of coordinates. A planar ternary ring is not a ring in the traditional sense, but any field gives a planar ternary ring where the operation is defined by . Thus, we can think of a planar ternary ring as a generalization of a field where the ternary operation takes the place of both addition and multiplication. In effect, in computer architecture, this ternary operation is known, e.g., as the multiply–accumulate operation (MAC). There is wide variation in the terminology. Planar ternary rings or ternary fields as defined here have been called by other names in the literature, and the term "planar ternary ring" can mean a variant of the system defined here. The term "ternary ring" often means a planar ternary ring, but it can also simply mean a ternary system.
rdf:langString 数学における代数構造 (R, T) が空でない集合 R とその上の T: R3 → R の組として与えられるとき、三項系と呼ぶ。 は平面三項環(へいめんさんこうかん、英: planar ternary ring; PTR)または三項体 (Ternärkörper; ternary field) 特別な種類の三項系を座標として用いて射影平面を構成した。平面三項「環」は、加法と乗法の定められる環類似構造を持つが、厳密には必ずしも環ではない。 用語法には広くバリエーションがある。本項に言う平面三項環を文献によっては別の呼び方をするし、また本項の言うものの変種を平面三項環と呼ぶものもある。短く三項環と言うとき、平面三項環の意味で用いる場合もあれば、より一般の(あるいは別の)三項系の意味であるかもしれない。
rdf:langString 사영기하학에서 삼진환(三進環, 영어: ternary ring)은 사영 평면의 점의 일종의 좌표계를 구성할 수 있는 대수 구조이며, 하나의 3항 연산을 갖는다.
xsd:nonNegativeInteger 10148

data from the linked data cloud