Piecewise

http://dbpedia.org/resource/Piecewise an entity of type: WikicatBasicConceptsInSetTheory

في الرياضيات، الدالة متعددة التعريف هي دالة تعرف عن طريق أكثر من دالة، كلٌ تطبق لفترة معينة من مجال الدالة الرئيسة. rdf:langString
En mathématiques, les énoncés de certaines propriétés d'analyse et résultats de convergence se réfèrent à des fonctions vérifiant des hypothèses telles que continues par morceaux, dérivables par morceaux, etc. Ces fonctions sont regroupées par classes de régularité qui sont autant d'espaces vectoriels emboîtés, appelés « classe Ck par morceaux » et notés CkI. rdf:langString
数学における区分定義写像(くぶんていぎしゃぞう、英: piecewise-defined function; 区分的に定義された函数)あるいは区分(ごとの)写像 (piecewise function) は、独立変数の値によってその写像を定義する「対応規則」が変化するような写像である。つまり区分定義写像は、その定義域の分割の各小片(定義域片)上で定義された複数の写像の寄せ集めとして定義される。 区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。たとえば、「区分的に微分可能」や「区分的に連続的微分可能」な函数は、定義域片上ではいずれも微分可能だが、全体としては(つまり定義域片の「境界」で)微分可能でないことが起こり得る。凸解析では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の劣微分が考えられる。 rdf:langString
In matematica una funzione definita a tratti (o semplicemente funzione a tratti) è una funzione definita da varie sottofunzioni, ciascuna delle quali è definita su un certo sottodominio, cioè su un sottoinsieme del dominio della funzione definita a tratti. Questi sottodomini formano una partizione del dominio della funzione definita a tratti. rdf:langString
In de analyse, een deelgebied van de wiskunde, is een stuksgewijs gedefinieerde functie een functie waarvan het domein is opgedeeld in een eindig aantal intervallen op elk waarvan een functie gedefinieerd is. De functie is dus gedefinieerd door een eindig aantal andere functies, gedefinieerd op afzonderlijke delen van het domein. Een voorbeeld van een stuksgewijs gedefinieerde functie is de absolute waarde die uit twee delen bestaat. rdf:langString
Кусо́чно-за́данная фу́нкция — функция одной переменной, определённая на множестве вещественных чисел, которая задана отдельной формулой (или другим способом задания функции) на каждом из интервалов, составляющих область её определения. Кусочно-аффинная функция - это числовая функция от одной переменной такая , что всю её область определения можно "разделить" на промежутки так , что на внутренности каждого из промежутков функция аффинная . rdf:langString
在數學中,分段定義的函數稱為分段函數,是由多個子函數而定義的,施加到主函數的域的一定的時間間隔的每個子函數(子域)。分段實際上是一種表達函數的方式,而不是函數本身的一個特徵,但是具有額外的限定,可以描述函數的本質。例如,分段多項式函數是在其每個子域上是多項式的函數,但是每個子域上可能是不同的。字分段也用來描述適用於每件分段定義的函數的任何屬性,但不一定保持為函數的整個域。一個函數是分段微分的或分段連續微分的,如果每個子塊在整個子域內是可區分的,即使整個函數在塊之間的點上可能是不可區分的。在中,導數的概念可以被分段函數的子導數的概念取代。儘管分段定義中的“塊”不一定是間隔,但是除非是間隔,否則函數不被稱為分段線性、分段連續或分段可微。 rdf:langString
Кусково-задана функція — функція, визначена на множині дійсних чисел, задана на кожному з інтервалів, що складають область визначення, окремою формулою. rdf:langString
En matemàtiques, una funció definida a trossos f(x) d'una variable real x és una funció amb una definició diferent en diferents subconjunts disjunts del seu domini. A aquestes funcions també s'anomenen funcions definides per intervals. Un exemple molt conegut de funció definida a trossos és el valor absolut. La funció valor absolut per valors reals es pot definir com el mateix valor quan aquest valor és positiu, i canviant-li el signe si és negatiu. Formalment: rdf:langString
En matemáticas, una función definida a trozos (también denominada función multipartes, función por partes, función por pedazos, función por intervalo, función seccionada o función definida por tramos) es una función cuya definición, (la regla que define la dependencia), llamada regla de correspondencia, cambia dependiendo del valor de la variable independiente.​ Formalmente, una función real f (definida a trozos) de una variable real x es la relación cuya definición está dada por varios conjuntos disjuntos de su dominio (conocidos como subdominios). rdf:langString
Normalean, funtzioak (x aldagai batekin) adierazpen aljebraiko bakar batekin definitzen dira, eta x aldagaiak balio errealak hartzen ditu (problematikoak direnak izan ezik, hala nola izendatzailea deuseztatzen dutenak). Zatika definitutako funtzioak modu batera edo bestera definitzen diren funtzioak dira, x aldagaiak hartzen duen balioaren arabera. Matematikan, zatikako funtzioa x aldagai independentearen balioak zein diren era ezberdinetan definitzen den funtzioa da. Adibidez, ondoko funtzioa hiru zatitan definitutako funtzioa da: rdf:langString
In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. Piecewise definition is actually a way of expressing the function, rather than a characteristic of the function itself. rdf:langString
Em matemática, uma função definida em trecho, uma função defina por troços, uma função definida por partes ou uma função definida por ramos (em Portugal) é uma função definida por várias sentenças abertas, cuja definição depende do valor da variável independente. Cada uma das sentenças que definem a função estão ligadas a subdomínios disjuntos entre si que estão contidos no domínio da função. rdf:langString
rdf:langString دالة متعددة التعريف
rdf:langString Funció definida a trossos
rdf:langString Función definida a trozos
rdf:langString Zatikako funtzio
rdf:langString Régularité par morceaux
rdf:langString Funzione definita a tratti
rdf:langString 区分的
rdf:langString Stuksgewijs
rdf:langString Piecewise
rdf:langString Funções definidas em trechos
rdf:langString Кусочно-заданная функция
rdf:langString Кусково-задана функція
rdf:langString 分段
xsd:integer 404130
xsd:integer 1110845561
rdf:langString في الرياضيات، الدالة متعددة التعريف هي دالة تعرف عن طريق أكثر من دالة، كلٌ تطبق لفترة معينة من مجال الدالة الرئيسة.
rdf:langString En matemàtiques, una funció definida a trossos f(x) d'una variable real x és una funció amb una definició diferent en diferents subconjunts disjunts del seu domini. A aquestes funcions també s'anomenen funcions definides per intervals. Un exemple molt conegut de funció definida a trossos és el valor absolut. La funció valor absolut per valors reals es pot definir com el mateix valor quan aquest valor és positiu, i canviant-li el signe si és negatiu. Formalment: La funció de la figura, que és discontínua a x0, és un altre exemple de funció definida a trossos. La funció esglaó també ho és (és una funció discontínua al zero). Es pot emprar el terme a trossos per referir-nos a propietats d'una funció definida a trossos. Per exemple, una funció pot ser derivable a trossos. Les funcions definides a trossos es diu que són funcions lineals a trossos quan les diferents expressions que les defineixen són lineals. Aquest és el cas de la funció valor absolut.
rdf:langString En matemáticas, una función definida a trozos (también denominada función multipartes, función por partes, función por pedazos, función por intervalo, función seccionada o función definida por tramos) es una función cuya definición, (la regla que define la dependencia), llamada regla de correspondencia, cambia dependiendo del valor de la variable independiente.​ Formalmente, una función real f (definida a trozos) de una variable real x es la relación cuya definición está dada por varios conjuntos disjuntos de su dominio (conocidos como subdominios). La palabra "A trozos" se usa para describir cualquier propiedad de una función definida a trozos que se cumple para cada trozo aunque podría no cumplirse para todo el dominio de f. Por ejemplo, una función es diferenciable a trozos si cada trozo es diferenciable a lo largo del dominio.
rdf:langString Normalean, funtzioak (x aldagai batekin) adierazpen aljebraiko bakar batekin definitzen dira, eta x aldagaiak balio errealak hartzen ditu (problematikoak direnak izan ezik, hala nola izendatzailea deuseztatzen dutenak). Zatika definitutako funtzioak modu batera edo bestera definitzen diren funtzioak dira, x aldagaiak hartzen duen balioaren arabera. Matematikan, zatikako funtzioa x aldagai independentearen balioak zein diren era ezberdinetan definitzen den funtzioa da. Adibidez, ondoko funtzioa hiru zatitan definitutako funtzioa da: Zatikako funtzioak zati bateraezin ezberdinen bitartez definitzen badira ere, badira zatikako funtzioak modu trinkoan defini daitezkeenak, hala nola balio absolutu funtzioa ( eta zenbaki osoko funtzioak (zoru funtzioa eta sabai funtzioa). Beste alde batetik, ohikoa da zatikako funtzioak funtzio baten limitea eta jarraitutasuna kontzeptu matematikoak azaltzeko, aise eman baitaitezke zatikako funtzioen adibideak non limitea ez den existitzen eta funtzioa jarraitua ez den.
rdf:langString En mathématiques, les énoncés de certaines propriétés d'analyse et résultats de convergence se réfèrent à des fonctions vérifiant des hypothèses telles que continues par morceaux, dérivables par morceaux, etc. Ces fonctions sont regroupées par classes de régularité qui sont autant d'espaces vectoriels emboîtés, appelés « classe Ck par morceaux » et notés CkI.
rdf:langString In mathematics, a piecewise-defined function (also called a piecewise function, a hybrid function, or definition by cases) is a function defined by multiple sub-functions, where each sub-function applies to a different interval in the domain. Piecewise definition is actually a way of expressing the function, rather than a characteristic of the function itself. A distinct, but related notion is that of a property holding piecewise for a function, used when the domain can be divided into intervals on which the property holds. Unlike for the notion above, this is actually a property of the function itself. A piecewise linear function (which happens to be also continuous) is depicted as an example.
rdf:langString 数学における区分定義写像(くぶんていぎしゃぞう、英: piecewise-defined function; 区分的に定義された函数)あるいは区分(ごとの)写像 (piecewise function) は、独立変数の値によってその写像を定義する「対応規則」が変化するような写像である。つまり区分定義写像は、その定義域の分割の各小片(定義域片)上で定義された複数の写像の寄せ集めとして定義される。 区分ごとに考えるというのは写像そのものの性質ではなく実際には表示法を言っているのであるが、適当な仮定を追加して写像の性質を記述することに利用できる。たとえば、「区分的に微分可能」や「区分的に連続的微分可能」な函数は、定義域片上ではいずれも微分可能だが、全体としては(つまり定義域片の「境界」で)微分可能でないことが起こり得る。凸解析では、そのような点をも含むように微分係数の概念を一般化するために、区分定義函数の劣微分が考えられる。
rdf:langString In matematica una funzione definita a tratti (o semplicemente funzione a tratti) è una funzione definita da varie sottofunzioni, ciascuna delle quali è definita su un certo sottodominio, cioè su un sottoinsieme del dominio della funzione definita a tratti. Questi sottodomini formano una partizione del dominio della funzione definita a tratti.
rdf:langString In de analyse, een deelgebied van de wiskunde, is een stuksgewijs gedefinieerde functie een functie waarvan het domein is opgedeeld in een eindig aantal intervallen op elk waarvan een functie gedefinieerd is. De functie is dus gedefinieerd door een eindig aantal andere functies, gedefinieerd op afzonderlijke delen van het domein. Een voorbeeld van een stuksgewijs gedefinieerde functie is de absolute waarde die uit twee delen bestaat.
rdf:langString Кусо́чно-за́данная фу́нкция — функция одной переменной, определённая на множестве вещественных чисел, которая задана отдельной формулой (или другим способом задания функции) на каждом из интервалов, составляющих область её определения. Кусочно-аффинная функция - это числовая функция от одной переменной такая , что всю её область определения можно "разделить" на промежутки так , что на внутренности каждого из промежутков функция аффинная .
rdf:langString Em matemática, uma função definida em trecho, uma função defina por troços, uma função definida por partes ou uma função definida por ramos (em Portugal) é uma função definida por várias sentenças abertas, cuja definição depende do valor da variável independente. Cada uma das sentenças que definem a função estão ligadas a subdomínios disjuntos entre si que estão contidos no domínio da função. A palavra trecho é também usada para descrever qualquer propriedade de uma função definida em trechos que sustentam-se para cada parte mas podem não sustentar-se para o domínio inteiro da função. Uma função é diferenciável em trechos ou diferenciável continuamente em trechos se cada parte é diferenciável completamente em seu domínio. Em análise complexa, a noção de uma derivada pode ser substituída por aquela da subderivada para funções em trechos. Apesar das "partes" em uma definição em trechos não necessitarem ser intervalos, uma função não é chamada "linear em trechos" ou "contínua em trechos" ou "diferenciável em trechos" exceto se as partes sejam intervalos.
rdf:langString 在數學中,分段定義的函數稱為分段函數,是由多個子函數而定義的,施加到主函數的域的一定的時間間隔的每個子函數(子域)。分段實際上是一種表達函數的方式,而不是函數本身的一個特徵,但是具有額外的限定,可以描述函數的本質。例如,分段多項式函數是在其每個子域上是多項式的函數,但是每個子域上可能是不同的。字分段也用來描述適用於每件分段定義的函數的任何屬性,但不一定保持為函數的整個域。一個函數是分段微分的或分段連續微分的,如果每個子塊在整個子域內是可區分的,即使整個函數在塊之間的點上可能是不可區分的。在中,導數的概念可以被分段函數的子導數的概念取代。儘管分段定義中的“塊”不一定是間隔,但是除非是間隔,否則函數不被稱為分段線性、分段連續或分段可微。
rdf:langString Кусково-задана функція — функція, визначена на множині дійсних чисел, задана на кожному з інтервалів, що складають область визначення, окремою формулою.
xsd:nonNegativeInteger 6957

data from the linked data cloud