Photostimulation

http://dbpedia.org/resource/Photostimulation an entity of type: WikicatBiochemistryMethods

Unter Photostimulation versteht man in der Neurologie, speziell in der Epileptologie eine Provokationsmethode. Während einer EEG-Ableitung wird der Proband mit einem Flackerlicht in steigender und wieder abfallender Frequenz von 4 bis 20 Hz „gereizt“. Bei empfindlichen Personen kann dadurch in der Hirnstromkurve beobachtet werden, dass sich die elektrische Oberflächenaktivität des Gehirns zunehmend synchronisiert (sogenannte „Photoparoxysmale Reaktion“). Dies zeigt sich in immer amplitudenhöheren Wellen von immer kürzerer Wellenlänge, sogenannten „steilen Wellen“, von anderen Autoren auch „hypersynchrone Aktivität“ oder „epilepsietypische Potentiale“ genannt. rdf:langString
Photostimulation is the use of light to artificially activate biological compounds, cells, tissues, or even whole organisms. Photostimulation can be used to noninvasively probe various relationships between different biological processes, using only light. In the long run, photostimulation has the potential for use in different types of therapy, such as migraine headache. Additionally, photostimulation may be used for the mapping of neuronal connections between different areas of the brain by “uncaging” signaling biomolecules with light. Therapy with photostimulation has been called light therapy, phototherapy, or photobiomodulation. rdf:langString
rdf:langString Photostimulation
rdf:langString Photostimulation
xsd:integer 2270459
xsd:integer 1122052648
rdf:langString Unter Photostimulation versteht man in der Neurologie, speziell in der Epileptologie eine Provokationsmethode. Während einer EEG-Ableitung wird der Proband mit einem Flackerlicht in steigender und wieder abfallender Frequenz von 4 bis 20 Hz „gereizt“. Bei empfindlichen Personen kann dadurch in der Hirnstromkurve beobachtet werden, dass sich die elektrische Oberflächenaktivität des Gehirns zunehmend synchronisiert (sogenannte „Photoparoxysmale Reaktion“). Dies zeigt sich in immer amplitudenhöheren Wellen von immer kürzerer Wellenlänge, sogenannten „steilen Wellen“, von anderen Autoren auch „hypersynchrone Aktivität“ oder „epilepsietypische Potentiale“ genannt.
rdf:langString Photostimulation is the use of light to artificially activate biological compounds, cells, tissues, or even whole organisms. Photostimulation can be used to noninvasively probe various relationships between different biological processes, using only light. In the long run, photostimulation has the potential for use in different types of therapy, such as migraine headache. Additionally, photostimulation may be used for the mapping of neuronal connections between different areas of the brain by “uncaging” signaling biomolecules with light. Therapy with photostimulation has been called light therapy, phototherapy, or photobiomodulation. Photostimulation methods fall into two general categories: one set of methods uses light to uncage a compound that then becomes biochemically active, binding to a downstream effector. For example, uncaging glutamate is useful for finding excitatory connections between neurons, since the uncaged glutamate mimics the natural synaptic activity of one neuron impinging upon another. The other major photostimulation method is the use of light to activate a light-sensitive protein such as rhodopsin, which can then excite the cell expressing the opsin. Scientists have long postulated the need to control one type of cell while leaving those surrounding it untouched and unstimulated. Well-known scientific advancements such as the use of electrical stimuli and electrodes have succeeded in neural activation but fail to achieve the aforementioned goal because of their imprecision and inability to distinguish between different cell types. The use of optogenetics (artificial cell activation via the use of light stimuli) is unique in its ability to deliver light pulses in a precise and timely fashion. Optogenetics is somewhat bidirectional in its ability to control neurons. Channels can be either depolarized or hyperpolarized depending on the wavelength of light that targets them. For instance, the technique can be applied to channelrhodopsin cation channels to initiate neuronal depolarization and eventually activation upon illumination. Conversely, activity inhibition of a neuron can be triggered via the use of optogenetics as in the case of the chloride pump halorhodopsin which functions to hyperpolarize neurons. Before optogenetics can be performed, however, the subject at hand must express the targeted channels. Natural and abundant in microbials, rhodopsins—including bacteriorhodopsin, halorhodopsin and channelrhodopsin—each have a different characteristic action spectrum which describes the set of colors and wavelengths that they respond to and are driven to function by. It has been shown that channelrhodopsin-2, a monolithic protein containing a light sensor and a cation channel, provides electrical stimulation of appropriate speed and magnitude to activate neuronal spike firing. Recently, photoinhibition, the inhibition of neural activity with light, has become feasible with the application of molecules such as the light-activated chloride pump halorhodopsin to neural control. Together, blue-light activated channelrhodopsin-2 and the yellow light-activated chloride pump halorhodopsin enable multiple-color, optical activation and silencing of neural activity. (See also Photobiomodulation)
xsd:nonNegativeInteger 15128

data from the linked data cloud