Peter Dayan

http://dbpedia.org/resource/Peter_Dayan an entity of type: Thing

Peter Dayan FRS is director at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. He is co-author of Theoretical Neuroscience, an influential textbook on computational neuroscience. He is known for applying Bayesian methods from machine learning and artificial intelligence to understand neural function and is particularly recognized for relating neurotransmitter levels to prediction errors and Bayesian uncertainties. He has pioneered the field of reinforcement learning (RL) where he helped develop the Q-learning algorithm, and made contributions to unsupervised learning, including the wake-sleep algorithm for neural networks and the Helmholtz machine. rdf:langString
Peter Dayan (* 1965) ist ein britischer Kognitions- und Neurowissenschaftler, der bedeutende Beiträge zur Computational Neuroscience geleistet hat. Dayan studierte Mathematik in Cambridge und wurde bei David Willshaw an der University of Edinburgh in Informatik (Künstliche Intelligenz) promoviert. Als Post-Doktorand war er bei Terry Sejnowski am Salk-Institut und an der Universität Toronto. Er war Assistant Professor am Massachusetts Institute of Technology und ab 1998 Professor am University College London, wo er seit 2002 Direktor der Gatsby Computational Neuroscience Unit ist. Im September 2018 wurde er zum Direktor am Max-Planck-Institut für biologische Kybernetik berufen. rdf:langString
rdf:langString Peter Dayan
rdf:langString Peter Dayan
rdf:langString Peter Dayan
rdf:langString Peter Dayan
xsd:integer 6097857
xsd:integer 1092891945
rdf:langString Reinforcing connectionism : learning the statistical way
xsd:integer 1991
rdf:langString Royal Society 2018
rdf:langString Peter Dayan (* 1965) ist ein britischer Kognitions- und Neurowissenschaftler, der bedeutende Beiträge zur Computational Neuroscience geleistet hat. Dayan studierte Mathematik in Cambridge und wurde bei David Willshaw an der University of Edinburgh in Informatik (Künstliche Intelligenz) promoviert. Als Post-Doktorand war er bei Terry Sejnowski am Salk-Institut und an der Universität Toronto. Er war Assistant Professor am Massachusetts Institute of Technology und ab 1998 Professor am University College London, wo er seit 2002 Direktor der Gatsby Computational Neuroscience Unit ist. Im September 2018 wurde er zum Direktor am Max-Planck-Institut für biologische Kybernetik berufen. Dayan befasst sich mit Maschinenlernen (Bestärkendes Lernen, Verwendung von Bayes-Methoden) und speziell dem Erstellen von mathematischen Modellen für neuronale Lernprozesse und neuronale Informationsverarbeitung auf dieser Basis. Er benutzt dabei Modelle bestärkenden Lernens, bei denen die Belohnung intern simuliert wird, so dass Lernen auch ohne äußere Belohnung möglich ist. Als bestärkendes Element identifizierte er dabei den Neurotransmitter Dopamin. 1997 wandte er mit Kollegen Temporal Difference Learning auf die Analyse von Neuronennetzwerke mit Dopamin als Transmitter in Affen an. Er sieht die neuronalen Netzwerke im Gehirn als ähnlich zu Bayes-Netzwerken. Dayan schlug eine neue Interpretation der Funktion des Kleinhirns vor: es wiederholt über Nacht Aktivitätsmuster von Bewegungen, damit diese vom Gehirn nicht verlernt werden. Peter Dayan wurde 2012 mit dem Rumelhart-Preis für Beiträge zu theoretischen Grundlagen menschlicher Kognition sowie 2017 mit dem Brain Prize der Grete Lundbeck European Brain Research Foundation ausgezeichnet. Im Jahr 2018 wurde er zum Fellow der Royal Society des Vereinigten Königreichs berufen, seit 2019 ist er Fellow der American Association for the Advancement of Science (AAAS). Zudem erhielt er eine Alexander von Humboldt-Professur, den höchstdotierten Forschungspreis Deutschlands, und erhält einen Lehrstuhl im Fachbereich Informatik der Universität Tübingen.
rdf:langString Peter Dayan FRS is director at the Max Planck Institute for Biological Cybernetics in Tübingen, Germany. He is co-author of Theoretical Neuroscience, an influential textbook on computational neuroscience. He is known for applying Bayesian methods from machine learning and artificial intelligence to understand neural function and is particularly recognized for relating neurotransmitter levels to prediction errors and Bayesian uncertainties. He has pioneered the field of reinforcement learning (RL) where he helped develop the Q-learning algorithm, and made contributions to unsupervised learning, including the wake-sleep algorithm for neural networks and the Helmholtz machine.
rdf:langString by4
rdf:langString David Willshaw
xsd:nonNegativeInteger 8725

data from the linked data cloud