P-adic L-function

http://dbpedia.org/resource/P-adic_L-function an entity of type: Disease

p진수 제타함수(p-adic zeta function) 또는 p진수 L-함수(p-adic L-function)란 리만 제타 함수 또는 디리클레 L-함수와 유사한 함수이며, 함수의 정의역과 치역이 p진수인 것을 말한다(여기서 p는 소수이다). rdf:langString
数学では、p-進ゼータ函数 (p-adic zeta function)、あるいはより一般的に p-進 L-函数 (p-adic L-function) とは、リーマンゼータ函数やより一般的なディリクレの L-函数に類似した函数であるが、函数の定義域と値域が p-進的であるものを言う(ここに p は素数である)。p-進 L-函数の定義域は p-進整数環 Zp や、射有限 p-群、ガロア表現の p-進族であり、像はp-進数体 Qp もしくはその代数的閉包である。 rdf:langString
En matemática, una función zeta p-ádica, o más generalmente, una función L p-ádica, es una función análoga a la función zeta de Riemann, o a las más generales funciones L, pero cuyo dominio y su codominio son p-ádicos (donde p es un número primo). Por ejemplo, el dominio podría ser los Zp, un p-grupo profinito, o una familia p-ádica de representaciones de Galois, y la imagen podría ser los números p-ádicos Qp o su clausura algebraica. rdf:langString
In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic (where p is a prime number). For example, the domain could be the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbers Qp or its algebraic closure. rdf:langString
En mathématiques, une fonction zêta p-adique, et plus généralement une fonction L p-adique, est une fonction analogue à la fonction zêta de Riemann, ou plus généralement des fonctions L, pour lesquels les ensembles de départ et d'arrivé sont les nombres p-adiques (où p est un nombre premier). Par exemple, l'ensemble de départ peut être l'ensemble des entiers p-adique Zp, un p-groupe profini, ou une famille de représentations galoisiennes p-adique, et l'image peut être l'ensemble Qp ou sa clôture algébrique. rdf:langString
rdf:langString Función L p-ádica
rdf:langString Fonction L p-adique
rdf:langString P進L関数
rdf:langString P진수 L-함수
rdf:langString P-adic L-function
xsd:integer 22059815
xsd:integer 1074242470
rdf:langString En mathématiques, une fonction zêta p-adique, et plus généralement une fonction L p-adique, est une fonction analogue à la fonction zêta de Riemann, ou plus généralement des fonctions L, pour lesquels les ensembles de départ et d'arrivé sont les nombres p-adiques (où p est un nombre premier). Par exemple, l'ensemble de départ peut être l'ensemble des entiers p-adique Zp, un p-groupe profini, ou une famille de représentations galoisiennes p-adique, et l'image peut être l'ensemble Qp ou sa clôture algébrique. La source d'une fonction L p-adique est généralement de deux types. La première — à partir de laquelle (en) et Heinrich-Wolfgang Leopoldt ont donné la première construction d'une fonction L p-adique — est via l'interpolation p-adique des (en). Par exemple, Kubota-Leopoldt ont utilisé les congruences de Kummer sur les nombres de Bernoulli pour construire une fonction L p-adique, la fonction zêta de Riemann p-adique ζp(s), dont les valeurs aux entiers impairs négatifs sont celles de la fonction zêta de Riemann (à un facteur de correction explicite près). Ces fonctions L p-adiques sont généralement dites fonctions L p-adiques analytiques. L'autre source de fonctions L p-adiques — découverte pour la première fois par Kenkichi Iwasawa — provient de la théorie des corps cyclotomiques, et plus généralement de certains représentation de Galois sur des tours de corps cyclotomiques. Une fonction L p-adique obtenue de cette manière est dite fonction L arithmétique p-adique car elle contient des informations sur le module de Galois donné. La (en) (devenu un théorème dû à Barry Mazur et Andrew Wiles) est l'affirmation que la fonction L p-adique de Kubota-Leopoldt et un analogue arithmétique construit via la théorie d'Iwasawa sont essentiellement les mêmes.
rdf:langString En matemática, una función zeta p-ádica, o más generalmente, una función L p-ádica, es una función análoga a la función zeta de Riemann, o a las más generales funciones L, pero cuyo dominio y su codominio son p-ádicos (donde p es un número primo). Por ejemplo, el dominio podría ser los Zp, un p-grupo profinito, o una familia p-ádica de representaciones de Galois, y la imagen podría ser los números p-ádicos Qp o su clausura algebraica. La fuente de una función L p-ádica tiende a ser una entre dos tipos. La primera fuente —por la cual y dieron la primera construcción de una función L p-ádica—es por medio de la interpolación p-ádica de . Por ejemplo , Kubota–Leopoldt usaron las para los números de Bernoulli para construir una función L p-ádica, la función zeta p-ádica ζp(s), cuyos valores en números enteros negativos impares son aquellos de la función zeta de Riemann para los números negativos enteros impares (junto a un factor de corrección explícito). Las funciones L p-ádicas que surgen de esta manera son comúnmente referenciadas como funciones L p-ádicas analíticas. La otra mayor fuente de funciones L p-ádicas—descubiertas inicialmente por Kenkichi Iwasawa—provienen de la aritmética de los cuerpos ciclotómicos, o más generalmente, de ciertos módulos de Galois sobre o de torres más generales. Una función L p-ádica que surge de esta manera es típicamente llamada función L p-ádica aritmética ya que codifica los datos aritméticos del módulo de Galois involucrado. La conjetura principal de la teoría de Iwasawa (ahora convertida en teorema gracias a Barry Mazur y Andrew Wiles) es una declaración de que la función L p-ádica de Kubota–Leopoldt y un análogo aritmético construido mediante la teoría de Iwasawa son esencialmente lo mismo. En situaciones más generales donde ambas (analítica y aritmética) funciones L p-ádicas son construidas (o se espera), la declaración de que es así se denota como la conjetura principal de Iwasawa para aquella situación. Tales conjeturas representan declaraciones formales concernientes a la filosofía que los valores especiales de funciones L contienen información aritmética.
rdf:langString In mathematics, a p-adic zeta function, or more generally a p-adic L-function, is a function analogous to the Riemann zeta function, or more general L-functions, but whose domain and target are p-adic (where p is a prime number). For example, the domain could be the p-adic integers Zp, a profinite p-group, or a p-adic family of Galois representations, and the image could be the p-adic numbers Qp or its algebraic closure. The source of a p-adic L-function tends to be one of two types. The first source—from which Tomio Kubota and Heinrich-Wolfgang Leopoldt gave the first construction of a p-adic L-function—is via the p-adic interpolation of special values of L-functions. For example, Kubota–Leopoldt used Kummer's congruences for Bernoulli numbers to construct a p-adic L-function, the p-adic Riemann zeta function ζp(s), whose values at negative odd integers are those of the Riemann zeta function at negative odd integers (up to an explicit correction factor). p-adic L-functions arising in this fashion are typically referred to as analytic p-adic L-functions. The other major source of p-adic L-functions—first discovered by Kenkichi Iwasawa—is from the arithmetic of cyclotomic fields, or more generally, certain Galois modules over towers of cyclotomic fields or even more general towers. A p-adic L-function arising in this way is typically called an arithmetic p-adic L-function as it encodes arithmetic data of the Galois module involved. The main conjecture of Iwasawa theory (now a theorem due to Barry Mazur and Andrew Wiles) is the statement that the Kubota–Leopoldt p-adic L-function and an arithmetic analogue constructed by Iwasawa theory are essentially the same. In more general situations where both analytic and arithmetic p-adic L-functions are constructed (or expected), the statement that they agree is called the main conjecture of Iwasawa theory for that situation. Such conjectures represent formal statements concerning the philosophy that special values of L-functions contain arithmetic information.
rdf:langString p진수 제타함수(p-adic zeta function) 또는 p진수 L-함수(p-adic L-function)란 리만 제타 함수 또는 디리클레 L-함수와 유사한 함수이며, 함수의 정의역과 치역이 p진수인 것을 말한다(여기서 p는 소수이다).
rdf:langString 数学では、p-進ゼータ函数 (p-adic zeta function)、あるいはより一般的に p-進 L-函数 (p-adic L-function) とは、リーマンゼータ函数やより一般的なディリクレの L-函数に類似した函数であるが、函数の定義域と値域が p-進的であるものを言う(ここに p は素数である)。p-進 L-函数の定義域は p-進整数環 Zp や、射有限 p-群、ガロア表現の p-進族であり、像はp-進数体 Qp もしくはその代数的閉包である。
xsd:nonNegativeInteger 8821

data from the linked data cloud