Optical neural network
http://dbpedia.org/resource/Optical_neural_network an entity of type: Software
An optical neural network is a physical implementation of an artificial neural network with optical components. Early optical neural networks used a photorefractive Volume hologram to interconnect arrays of input neurons to arrays of output with synaptic weights in proportion to the multiplexed hologram's strength. Volume holograms were further multiplexed using spectral hole burning to add one dimension of wavelength to space to achieve four dimensional interconnects of two dimensional arrays of neural inputs and outputs. This research led to extensive research on alternative methods using the strength of the optical interconnect for implementing neuronal communications.
rdf:langString
Оптические нейронные сети — реализация искусственных нейронных сетей в виде оптических систем. Для обеспечения параллелизма в цифровом компьютере необходима параллельная работа многих элементов. Занимаемое ими пространство, с учётом пространства, необходимого для изоляции одного элемента от другого, может стать настолько большим, что на пластине кремния не останется места для размещения вычислительных цепей. В то же время соединение элементов с помощью световых лучей не требует изоляции между сигнальными путями, световые потоки могут проходить один через другой без взаимного влияния. Более того, сигнальные пути могут быть расположены в трёх измерениях. Плотность путей передачи ограничена только размерами источников света, их дивергенцией и размерами детектора. Кроме того, все сигнальные пу
rdf:langString
rdf:langString
Optical neural network
rdf:langString
Оптические нейронные сети
xsd:integer
1635395
xsd:integer
1054405250
rdf:langString
An optical neural network is a physical implementation of an artificial neural network with optical components. Early optical neural networks used a photorefractive Volume hologram to interconnect arrays of input neurons to arrays of output with synaptic weights in proportion to the multiplexed hologram's strength. Volume holograms were further multiplexed using spectral hole burning to add one dimension of wavelength to space to achieve four dimensional interconnects of two dimensional arrays of neural inputs and outputs. This research led to extensive research on alternative methods using the strength of the optical interconnect for implementing neuronal communications. Some artificial neural networks that have been implemented as optical neural networks include the Hopfield neural network and the Kohonen self-organizing map with liquid crystal spatial light modulators Optical neural networks can also be based on the principles of neuromorphic engineering, creating neuromorphic photonic systems. Typically, these systems encode information in the networks using spikes, mimicking the functionality of spiking neural networks in optical and photonic hardware. Photonic devices that have demonstrated neuromorphic functionalities include (among others) vertical-cavity surface-emitting lasers, integrated photonic modulators, optoelectronic systems based on superconducting Josephson junctions or systems based on resonant tunnelling diodes.
rdf:langString
Оптические нейронные сети — реализация искусственных нейронных сетей в виде оптических систем. Для обеспечения параллелизма в цифровом компьютере необходима параллельная работа многих элементов. Занимаемое ими пространство, с учётом пространства, необходимого для изоляции одного элемента от другого, может стать настолько большим, что на пластине кремния не останется места для размещения вычислительных цепей. В то же время соединение элементов с помощью световых лучей не требует изоляции между сигнальными путями, световые потоки могут проходить один через другой без взаимного влияния. Более того, сигнальные пути могут быть расположены в трёх измерениях. Плотность путей передачи ограничена только размерами источников света, их дивергенцией и размерами детектора. Кроме того, все сигнальные пути могут работать одновременно, тем самым обеспечивая огромный темп передачи данных. Данное направление позволяет разработать отдельные компоненты необходимые для построения нейрокомпьютера.
xsd:nonNegativeInteger
7350