Opposite ring
http://dbpedia.org/resource/Opposite_ring an entity of type: AnatomicalStructure
Der Gegenring zu einem Ring ist eine Konstruktion aus dem mathematischen Teilgebiet der Ringtheorie. Der Gegenring zu einem Ring entsteht dadurch, dass man bei der Multiplikation die Faktoren vertauscht.
rdf:langString
En algèbre, l'anneau opposé A0 ou Aop d'un anneau A possède le même groupe additif sous-jacent que A et sa multiplication est effectuée dans l'ordre opposé : si l'on note et les multiplications respectives de A et Aop, on a . La notion d'anneau opposé permet d'unifier l'étude des modules à gauche et des modules à droite, car les modules à droite sur un anneau sont exactement les modules à gauche sur l'anneau opposé.
rdf:langString
代数学において、環の逆、逆転、反対あるいは反転 (opposite) は同じ元と同じ加法演算をもつ環であって、積が逆順で行われるものである。 より正確には、環 (R, +, ·) の反転は環 (R, +, *) であって、積 '*' が a * b = b · a によって定義される。(環の加法は定義から常に可換である。)
rdf:langString
In de ringtheorie, een deelgebied van de wiskunde, is het tegenovergestelde van een ring een andere ring, aangeduid met of met dezelfde elementen en dezelfde optellingsoperatie, maar waarin de vermenigvuldigingsoperatie in de omgekeerde volgorde wordt uitgevoerd. Preciezer uitgedrukt is de tegenovergestelde van een ring de ring waarin de vermenigvuldiging gedefinieerd is als De operatie 'optellen' is in ringen per definitie altijd commutatief.
rdf:langString
In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring (R, +, ⋅) is the ring (R, +, ∗) whose multiplication ∗ is defined by a ∗ b = b ⋅ a for all a, b in R. The opposite ring can be used to define multimodules, a generalization of bimodules. They also help clarify the relationship between left and right modules (see ).
rdf:langString
rdf:langString
Gegenring
rdf:langString
Anneau opposé
rdf:langString
反転環
rdf:langString
Opposite ring
rdf:langString
Tegenovergestelde ring
xsd:integer
3129323
xsd:integer
1124246478
rdf:langString
Der Gegenring zu einem Ring ist eine Konstruktion aus dem mathematischen Teilgebiet der Ringtheorie. Der Gegenring zu einem Ring entsteht dadurch, dass man bei der Multiplikation die Faktoren vertauscht.
rdf:langString
En algèbre, l'anneau opposé A0 ou Aop d'un anneau A possède le même groupe additif sous-jacent que A et sa multiplication est effectuée dans l'ordre opposé : si l'on note et les multiplications respectives de A et Aop, on a . La notion d'anneau opposé permet d'unifier l'étude des modules à gauche et des modules à droite, car les modules à droite sur un anneau sont exactement les modules à gauche sur l'anneau opposé.
rdf:langString
In mathematics, specifically abstract algebra, the opposite of a ring is another ring with the same elements and addition operation, but with the multiplication performed in the reverse order. More explicitly, the opposite of a ring (R, +, ⋅) is the ring (R, +, ∗) whose multiplication ∗ is defined by a ∗ b = b ⋅ a for all a, b in R. The opposite ring can be used to define multimodules, a generalization of bimodules. They also help clarify the relationship between left and right modules (see ). Monoids, groups, rings, and algebras can all be viewed as categories with a single object. The construction of the opposite category generalizes the opposite group, opposite ring, etc.
rdf:langString
代数学において、環の逆、逆転、反対あるいは反転 (opposite) は同じ元と同じ加法演算をもつ環であって、積が逆順で行われるものである。 より正確には、環 (R, +, ·) の反転は環 (R, +, *) であって、積 '*' が a * b = b · a によって定義される。(環の加法は定義から常に可換である。)
rdf:langString
In de ringtheorie, een deelgebied van de wiskunde, is het tegenovergestelde van een ring een andere ring, aangeduid met of met dezelfde elementen en dezelfde optellingsoperatie, maar waarin de vermenigvuldigingsoperatie in de omgekeerde volgorde wordt uitgevoerd. Preciezer uitgedrukt is de tegenovergestelde van een ring de ring waarin de vermenigvuldiging gedefinieerd is als De operatie 'optellen' is in ringen per definitie altijd commutatief.
xsd:nonNegativeInteger
11205