Oppenheim conjecture
http://dbpedia.org/resource/Oppenheim_conjecture an entity of type: WikicatConjectures
In der Mathematik ist die Oppenheim-Vermutung eine inzwischen bewiesene Vermutung über die Werte quadratischer Formen und das klassische Beispiel für die Anwendung ergodentheoretischer Methoden in der Zahlentheorie.
rdf:langString
La conjecture d'Oppenheim appartient à la théorie mathématique de l'approximation diophantienne. Formulée en 1929 par (en) puis renforcée par Harold Davenport, elle concerne la représentation des nombres par des formes quadratiques. Dans les recherches initiales, on prenait le nombre de variables assez grand et l'on appliquait une version de la méthode du cercle de Hardy-Littlewood. En 1987, Gregori Margulis a complètement résolu la conjecture, par des méthodes issues de la théorie ergodique et de l'étude des sous-groupes discrets des groupes de Lie semi-simples.
rdf:langString
In Diophantine approximation, the Oppenheim conjecture concerns representations of numbers by real quadratic forms in several variables. It was formulated in 1929 by Alexander Oppenheim and later the conjectured property was further strengthened by Harold Davenport and Oppenheim. Initial research on this problem took the number n of variables to be large, and applied a version of the Hardy-Littlewood circle method. The definitive work of Margulis, settling the conjecture in the affirmative, used methods arising from ergodic theory and the study of discrete subgroups of semisimple Lie groups.
rdf:langString
rdf:langString
Oppenheim-Vermutung
rdf:langString
Conjecture d'Oppenheim
rdf:langString
Oppenheim conjecture
xsd:integer
5007342
xsd:integer
1043845254
rdf:langString
In der Mathematik ist die Oppenheim-Vermutung eine inzwischen bewiesene Vermutung über die Werte quadratischer Formen und das klassische Beispiel für die Anwendung ergodentheoretischer Methoden in der Zahlentheorie.
rdf:langString
La conjecture d'Oppenheim appartient à la théorie mathématique de l'approximation diophantienne. Formulée en 1929 par (en) puis renforcée par Harold Davenport, elle concerne la représentation des nombres par des formes quadratiques. Dans les recherches initiales, on prenait le nombre de variables assez grand et l'on appliquait une version de la méthode du cercle de Hardy-Littlewood. En 1987, Gregori Margulis a complètement résolu la conjecture, par des méthodes issues de la théorie ergodique et de l'étude des sous-groupes discrets des groupes de Lie semi-simples.
rdf:langString
In Diophantine approximation, the Oppenheim conjecture concerns representations of numbers by real quadratic forms in several variables. It was formulated in 1929 by Alexander Oppenheim and later the conjectured property was further strengthened by Harold Davenport and Oppenheim. Initial research on this problem took the number n of variables to be large, and applied a version of the Hardy-Littlewood circle method. The definitive work of Margulis, settling the conjecture in the affirmative, used methods arising from ergodic theory and the study of discrete subgroups of semisimple Lie groups.
xsd:nonNegativeInteger
5675