Operator K-theory

http://dbpedia.org/resource/Operator_K-theory

In mathematics, operator K-theory is a noncommutative analogue of topological K-theory for Banach algebras with most applications used for C*-algebras. rdf:langString
수학에서, 작용소 K이론(作用素K異論, 영어: operator K-theory)는 C* 대수에 대응되는 K이론이다. 주기 2의 보트 주기성을 가지며, 가환 C* 대수의 경우 겔판트 표현 정리에 의하여 이는 위상 K이론과 일치한다. rdf:langString
Die K-Theorie von Banachalgebren ist ein Konzept aus dem mathematischen Gebiet der Funktionalanalysis. Sie liefert Invarianten für Banachalgebren, das sind in der Funktionalanalysis untersuchte Algebren, die einige bekannte Funktionenräume und Operatorenalgebren wie zum Beispiel Räume stetiger oder integrierbarer Funktionen oder Algebren stetiger linearer Operatoren auf Banachräumen anhand wesentlicher gemeinsamer Eigenschaften verallgemeinern. rdf:langString
rdf:langString K-Theorie von Banachalgebren
rdf:langString 작용소 K이론
rdf:langString Operator K-theory
xsd:integer 13314265
xsd:integer 1120766978
rdf:langString Die K-Theorie von Banachalgebren ist ein Konzept aus dem mathematischen Gebiet der Funktionalanalysis. Sie liefert Invarianten für Banachalgebren, das sind in der Funktionalanalysis untersuchte Algebren, die einige bekannte Funktionenräume und Operatorenalgebren wie zum Beispiel Räume stetiger oder integrierbarer Funktionen oder Algebren stetiger linearer Operatoren auf Banachräumen anhand wesentlicher gemeinsamer Eigenschaften verallgemeinern. Sie verallgemeinert die topologische K-Theorie, die sich mit dem Studium von Vektorbündeln auf topologischen Räumen befasst, auf allgemeine Banachalgebren, wobei die C*-Algebren eine wichtige Rolle spielen. Die topologische K-Theorie kompakter Räume kann als K-Theorie der Banachalgebren der stetigen Funktionen umformuliert und dann auf beliebige Banachalgebren übertragen werden, sogar auf das Einselement der Algebren kann man verzichten. Da die Zuordnung ein kontravarianter Funktor von der Kategorie der kompakten Hausdorffräume in die Kategorie der Banachalgebren ist und da die topologische K-Theorie ebenfalls kontravariant ist, erhalten wir insgesamt einen kovarianten Funktor von der Kategorie der Banachalgebren in die Kategorie der abelschen Gruppen. Da hier auch nicht-kommutative Algebren auftreten können, spricht man von nicht-kommutativer Topologie. Die K-Theorie ist ein wichtiger Untersuchungsgegenstand in der Theorie der C*-Algebren.Im Folgenden sei eine -Banachalgebra, gehe aus durch Adjunktion eines Einselementes hervor.
rdf:langString In mathematics, operator K-theory is a noncommutative analogue of topological K-theory for Banach algebras with most applications used for C*-algebras.
rdf:langString 수학에서, 작용소 K이론(作用素K異論, 영어: operator K-theory)는 C* 대수에 대응되는 K이론이다. 주기 2의 보트 주기성을 가지며, 가환 C* 대수의 경우 겔판트 표현 정리에 의하여 이는 위상 K이론과 일치한다.
xsd:nonNegativeInteger 4039

data from the linked data cloud