Normal variance-mean mixture
http://dbpedia.org/resource/Normal_variance-mean_mixture an entity of type: WikicatCompoundDistributions
В теории вероятности нормальная смесь дисперсии-среднего со смешивающей плотностью это непрерывное вероятностное распределение случайной величины вида: где и — действительные числа и . Случайные величины и независимы, и — непрерывное вероятностное распределение на положительной полуоси с плотностью вероятности .
rdf:langString
In probability theory and statistics, a normal variance-mean mixture with mixing probability density is the continuous probability distribution of a random variable of the form where , and are real numbers, and random variables and are independent, is normally distributed with mean zero and variance one, and is continuously distributed on the positive half-axis with probability density function . The conditional distribution of given is thus a normal distribution with mean and variance . A normal variance-mean mixture can be thought of as the distribution of a certain quantity in an inhomogeneous population consisting of many different normal distributed subpopulations. It is the distribution of the position of a Wiener process (Brownian motion) with drift and infinitesimal var
rdf:langString
rdf:langString
Normal variance-mean mixture
rdf:langString
Нормальная смесь дисперсии-среднего
xsd:integer
6526281
xsd:integer
1036977169
rdf:langString
In probability theory and statistics, a normal variance-mean mixture with mixing probability density is the continuous probability distribution of a random variable of the form where , and are real numbers, and random variables and are independent, is normally distributed with mean zero and variance one, and is continuously distributed on the positive half-axis with probability density function . The conditional distribution of given is thus a normal distribution with mean and variance . A normal variance-mean mixture can be thought of as the distribution of a certain quantity in an inhomogeneous population consisting of many different normal distributed subpopulations. It is the distribution of the position of a Wiener process (Brownian motion) with drift and infinitesimal variance observed at a random time point independent of the Wiener process and with probability density function . An important example of normal variance-mean mixtures is the generalised hyperbolic distribution in which the mixing distribution is the generalized inverse Gaussian distribution. The probability density function of a normal variance-mean mixture with mixing probability density is and its moment generating function is where is the moment generating function of the probability distribution with density function , i.e.
rdf:langString
В теории вероятности нормальная смесь дисперсии-среднего со смешивающей плотностью это непрерывное вероятностное распределение случайной величины вида: где и — действительные числа и . Случайные величины и независимы, и — непрерывное вероятностное распределение на положительной полуоси с плотностью вероятности .
xsd:nonNegativeInteger
2594