Nielsen transformation
http://dbpedia.org/resource/Nielsen_transformation
In der Mathematik sind Nielsen-Transformationen ein wichtiges Hilfsmittel der kombinatorischen Gruppentheorie, sie sind nach dem Mathematiker Jakob Nielsen benannt.
rdf:langString
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups,. They were introduced in to prove that every subgroup of a free group is free (the Nielsen–Schreier theorem), but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. The textbook devotes all of chapter 3 to Nielsen transformations.
rdf:langString
En mathématiques, et notamment dans le domaine de l'algèbre, les transformations de Nielsen sont un outil important dans la théorie combinatoire des groupes. Ce sont certains automorphismes d'un groupe libre et elles sont très utiles dans l'étude des groupes libres. Elles portent le nom du mathématicien danois Jakob Nielsen, qui les a introduites en 1921 pour prouver que tout sous-groupe d'un groupe libre est libre (le théorème de Nielsen-Schreier), et elles sont maintenant utilisées dans une variété de domaines mathématiques.
rdf:langString
rdf:langString
Nielsen-Transformation
rdf:langString
Transformation de Nielsen
rdf:langString
Nielsen transformation
xsd:integer
18400182
xsd:integer
1112308296
rdf:langString
In der Mathematik sind Nielsen-Transformationen ein wichtiges Hilfsmittel der kombinatorischen Gruppentheorie, sie sind nach dem Mathematiker Jakob Nielsen benannt.
rdf:langString
In mathematics, especially in the area of abstract algebra known as combinatorial group theory, Nielsen transformations, named after Jakob Nielsen, are certain automorphisms of a free group which are a non-commutative analogue of row reduction and one of the main tools used in studying free groups,. They were introduced in to prove that every subgroup of a free group is free (the Nielsen–Schreier theorem), but are now used in a variety of mathematics, including computational group theory, k-theory, and knot theory. The textbook devotes all of chapter 3 to Nielsen transformations.
rdf:langString
En mathématiques, et notamment dans le domaine de l'algèbre, les transformations de Nielsen sont un outil important dans la théorie combinatoire des groupes. Ce sont certains automorphismes d'un groupe libre et elles sont très utiles dans l'étude des groupes libres. Elles portent le nom du mathématicien danois Jakob Nielsen, qui les a introduites en 1921 pour prouver que tout sous-groupe d'un groupe libre est libre (le théorème de Nielsen-Schreier), et elles sont maintenant utilisées dans une variété de domaines mathématiques.
xsd:nonNegativeInteger
16025