Newton polygon

http://dbpedia.org/resource/Newton_polygon an entity of type: Abstraction100002137

In der Mathematik ist das Newtonpolygon ein Werkzeug zur Untersuchung von Polynomen. rdf:langString
대수적 수론에서 뉴턴 다각형(Newton多角形, 영어: Newton polynomial)은 국소체 계수의 다항식의 성질을 나타내는 다각형이며, 각 계수의 값매김으로 정의되는 점들의 볼록 껍질이다. rdf:langString
Inom matematiken är Newtons polygon ett polygon i det euklidiska planet som kan associeras till ett polynom. Det är ett verktyg för att förstå beteendet hos polynom över . rdf:langString
في الرياضيات، يعد مضلع نيوتن أداة لفهم سلوك كثيرات الحدود (أو متعددات الحدود) على الحقول المحلية. في الحالة الأصلية، كان مجال الاهتمام المحلي هو مجال سلسلة لورنت الرسمية في X غير المحدد، بحيثُ أنَّ أي مجال كسور حلقة سلسلة القدرة الرسمية. K [[X]]، على K، حيث كان K هو الرقم الحقيقي أو حقل العدد المركب. لا يزال هذا ذا فائدة كبيرة فيما يتعلق بتوسعات بويسو. يعد مضلع نيوتن أداة فعالة لفهم المصطلحات الرئيسية. X a من حلول توسيع سلسلة الطاقة للمعادلات P ( F ( X )) = 0 K [[Y]] مع Y = X 1 / d للمقام d المقابل للفرع. يعطي مضلع نيوتن منهجًا حسابيًا فعالًا لحساب d. rdf:langString
En mathématiques, le polygone de Newton est un polygone du plan euclidien que l'on peut associer à un polynôme, lorsque les coefficients de ce dernier sont éléments d'un corps valué. Le polygone de Newton encode un certain nombre d'informations à propos de la factorisation d'un polynôme, et la localisation de ses racines. rdf:langString
In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields. In the original case, the local field of interest was essentially the field of formal Laurent series in the indeterminate X, i.e. the field of fractions of the formal power series ring ,over , where was the real number or complex number field. This is still of considerable utility with respect to Puiseux expansions. The Newton polygon is an effective device for understanding the leading terms of the power series expansion solutions to equations where is a polynomial with coefficients in , the polynomial ring; that is, implicitly defined algebraic functions. The exponents here are certain rational numbers, depending on the chosen; and rdf:langString
rdf:langString مضلع نيوتن
rdf:langString Newtonpolygon
rdf:langString Polygone de Newton
rdf:langString 뉴턴 다각형
rdf:langString Newton polygon
rdf:langString Newtons polygon
xsd:integer 742477
xsd:integer 1095424333
rdf:langString في الرياضيات، يعد مضلع نيوتن أداة لفهم سلوك كثيرات الحدود (أو متعددات الحدود) على الحقول المحلية. في الحالة الأصلية، كان مجال الاهتمام المحلي هو مجال سلسلة لورنت الرسمية في X غير المحدد، بحيثُ أنَّ أي مجال كسور حلقة سلسلة القدرة الرسمية. K [[X]]، على K، حيث كان K هو الرقم الحقيقي أو حقل العدد المركب. لا يزال هذا ذا فائدة كبيرة فيما يتعلق بتوسعات بويسو. يعد مضلع نيوتن أداة فعالة لفهم المصطلحات الرئيسية. X a من حلول توسيع سلسلة الطاقة للمعادلات P ( F ( X )) = 0 حيث P هي كثيرة الحدود مع معاملات في K [ X ]، الحلقة متعددة الحدود ؛ أي، وظائف جبرية محددة ضمنيًا. الأس r هنا هي أرقام منطقية معينة، اعتمادًا على الفرع المختار، والحلول نفسها هي السلسلة في: K [[Y]] مع Y = X 1 / d للمقام d المقابل للفرع. يعطي مضلع نيوتن منهجًا حسابيًا فعالًا لحساب d. بعد إدخال أرقام p-adic، تبين أن مضلع نيوتن مفيد بنفس القدر في مسائل التشعب للحقول المحلية، وبالتالي في نظرية الأعداد الجبرية. كانت مضلعات نيوتن مفيدة أيضًا في دراسة المنحنيات الإهليلجية.
rdf:langString In der Mathematik ist das Newtonpolygon ein Werkzeug zur Untersuchung von Polynomen.
rdf:langString En mathématiques, le polygone de Newton est un polygone du plan euclidien que l'on peut associer à un polynôme, lorsque les coefficients de ce dernier sont éléments d'un corps valué. Le polygone de Newton encode un certain nombre d'informations à propos de la factorisation d'un polynôme, et la localisation de ses racines. Il est particulièrement utile lorsque les coefficients du polynôme sont éléments d'un corps local non archimédien, comme le corps des nombres p-adiques, ou celui des séries de Laurent sur un corps fini, mais il peut également être utilisé avec profit dans l'étude des polynômes à coefficients rationnels, ou des polynômes en plusieurs indéterminées.
rdf:langString In mathematics, the Newton polygon is a tool for understanding the behaviour of polynomials over local fields, or more generally, over ultrametric fields. In the original case, the local field of interest was essentially the field of formal Laurent series in the indeterminate X, i.e. the field of fractions of the formal power series ring ,over , where was the real number or complex number field. This is still of considerable utility with respect to Puiseux expansions. The Newton polygon is an effective device for understanding the leading terms of the power series expansion solutions to equations where is a polynomial with coefficients in , the polynomial ring; that is, implicitly defined algebraic functions. The exponents here are certain rational numbers, depending on the chosen; and the solutions themselves are power series in with for a denominator corresponding to the branch. The Newton polygon gives an effective, algorithmic approach to calculating . After the introduction of the p-adic numbers, it was shown that the Newton polygon is just as useful in questions of ramification for local fields, and hence in algebraic number theory. Newton polygons have also been useful in the study of elliptic curves.
rdf:langString 대수적 수론에서 뉴턴 다각형(Newton多角形, 영어: Newton polynomial)은 국소체 계수의 다항식의 성질을 나타내는 다각형이며, 각 계수의 값매김으로 정의되는 점들의 볼록 껍질이다.
rdf:langString Inom matematiken är Newtons polygon ett polygon i det euklidiska planet som kan associeras till ett polynom. Det är ett verktyg för att förstå beteendet hos polynom över .
xsd:nonNegativeInteger 13743

data from the linked data cloud