Neuberg cubic
http://dbpedia.org/resource/Neuberg_cubic
In mathematics, in triangle geometry, Neuberg cubic is a special cubic plane curve in the plane of the reference triangle having several remarkable properties. It is a triangle cubic in that it is associated with the reference triangle. It is named after Joseph Jean Baptiste Neuberg (30 October 1840 – 22 March 1926), a Luxembourger mathematician, who first introduced the curve in a paper published in 1884. The curve appears as the first item, with identification number K001, in Bernard Gilbert's Catalogue of Triangle Cubics which is a compilation of extensive information about more than 1200 triangle cubics.
rdf:langString
De kubische kromme van Neuberg is de gepivoteerde isogonale kubische kromme met het snijpunt van de rechte van Euler en de oneindig verre rechte als pivot.De vergelijking in barycentrische coördinaten is
rdf:langString
rdf:langString
Neuberg cubic
rdf:langString
Kubische kromme van Neuberg
xsd:integer
69415319
xsd:integer
1121079702
rdf:langString
In mathematics, in triangle geometry, Neuberg cubic is a special cubic plane curve in the plane of the reference triangle having several remarkable properties. It is a triangle cubic in that it is associated with the reference triangle. It is named after Joseph Jean Baptiste Neuberg (30 October 1840 – 22 March 1926), a Luxembourger mathematician, who first introduced the curve in a paper published in 1884. The curve appears as the first item, with identification number K001, in Bernard Gilbert's Catalogue of Triangle Cubics which is a compilation of extensive information about more than 1200 triangle cubics.
rdf:langString
De kubische kromme van Neuberg is de gepivoteerde isogonale kubische kromme met het snijpunt van de rechte van Euler en de oneindig verre rechte als pivot.De vergelijking in barycentrische coördinaten is
xsd:nonNegativeInteger
8879