Natural density

http://dbpedia.org/resource/Natural_density

Asymptotická hustota je pojem z oboru teorie čísel, kde se jedná o jeden z nástrojů jak změřit, jak „velká“ je nějaká podmnožina přirozených čísel. Je-li náhodně vybíráno přirozené číslo z konečné množiny [1,n], pak pravděpodobnost, že bude prvkem množiny A, je rovna poměru prvků A v daném intervalu k celkovému počtu čísel z intervalu. Pokud pro n jdoucí k nekonečnu tento poměr (neboli tato pravděpodobnost) konverguje k nějaké limitě, pak se hodnota této limity nazývá asymptotická hustota množiny A. Asymptotickou hustotu lze tedy chápat jako pravděpodobnost, že při zvolení náhodného přirozeného čísla bude toto číslo prvkem A. Koneckonců, studium asymptotické hustoty je jedním z předmětů . rdf:langString
Die asymptotische Dichte ist ein zahlentheoretischer Grenzwert, der den Anteil einer Untermenge natürlicher Zahlen an der Menge natürlicher Zahlen angibt. rdf:langString
En mathématiques, et plus particulièrement en théorie des nombres, la densité asymptotique (ou densité naturelle, ou densité arithmétique) est une façon de mesurer la « taille » de certains sous-ensembles d'entiers naturels. La densité d'un ensemble A peut être vue comme une approximation de la probabilité qu'un entier tiré au hasard dans un intervalle arbitrairement grand appartienne à A ; son étude fait partie de la théorie analytique des nombres. rdf:langString
De asymptotische dichtheid (of natuurlijke dichtheid) is in de getaltheorie een waarde om mee aan te geven hoe 'groot' een deelverzameling van de natuurlijke getallen is. rdf:langString
정수론에서 점근 밀도(Asymptotic Density 또는 Natural density 또는 arithmetic density)란, 자연수의 부분집합이 얼마나 큰지를 측정하는 척도이다. 직관적으로 완전 제곱수보다는 자연수가 "더 많다". 두 집합은 물론 일대일 대응을 통해 무한하고 가산임을 확인할 수 있으므로 실제로 더 큰 것은 아니다. 그러나 이러한 직관적 관찰을 좀 엄밀히 만들 필요가 있다. rdf:langString
自然密度(英語:natural density),又称渐进密度(英語:asymptotic density),是数论中度量自然数子集大小的工具之一。 rdf:langString
En teoría de números, la densidad natural (también conocida como densidad asintótica o densidad aritmética) es un método para medir el tamaño de un subconjunto del conjunto de los números naturales. Se basa principalmente en la probabilidad de encontrar miembros del subconjunto deseado cuando se peina el intervalo [1, n] a medida que n crece. rdf:langString
In number theory, natural density (also referred to as asymptotic density or arithmetic density) is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval [1, n] as n grows large. rdf:langString
В теории чисел асимптотическая плотность — это одна изхарактеристик, помогающих оценить, насколько велико подмножество множества натуральных чисел . Интуитивно мы ощущаем, что нечётных чисел «больше», чем квадратов; однако множество нечётных чисел в действительности не «больше» множества квадратов: оба множества бесконечны и счётны, и, таким образом, могут быть приведены в соответствие «один к одному» друг с другом. Очевидно, чтобы формализовать наше интуитивное понятие, нам нужен лучший способ. rdf:langString
В теорії чисел асимптотична щільність — це одна з характеристик, які допомагають оцінити, наскільки велика підмножина множини натуральних чисел . Інтуїтивно ми відчуваємо, що непарних чисел «більше», ніж квадратів; однак множина непарних чисел насправді не «більша» від множини квадратів: обидві множини нескінченні і зліченні, і, таким чином, можуть бути приведені у відповідність «один до одного» одна з одною. Очевидно, щоб формалізувати наше інтуїтивне поняття, потрібен кращий спосіб. rdf:langString
rdf:langString Asymptotická hustota
rdf:langString Asymptotische Dichte
rdf:langString Densidad natural
rdf:langString Densité asymptotique
rdf:langString 점근 밀도
rdf:langString Natural density
rdf:langString Asymptotische dichtheid
rdf:langString Асимптотическая плотность
rdf:langString 自然密度
rdf:langString Асимптотична щільність
xsd:integer 1819983
xsd:integer 1124869821
xsd:integer 2861
rdf:langString Asymptotic density
rdf:langString Asymptotická hustota je pojem z oboru teorie čísel, kde se jedná o jeden z nástrojů jak změřit, jak „velká“ je nějaká podmnožina přirozených čísel. Je-li náhodně vybíráno přirozené číslo z konečné množiny [1,n], pak pravděpodobnost, že bude prvkem množiny A, je rovna poměru prvků A v daném intervalu k celkovému počtu čísel z intervalu. Pokud pro n jdoucí k nekonečnu tento poměr (neboli tato pravděpodobnost) konverguje k nějaké limitě, pak se hodnota této limity nazývá asymptotická hustota množiny A. Asymptotickou hustotu lze tedy chápat jako pravděpodobnost, že při zvolení náhodného přirozeného čísla bude toto číslo prvkem A. Koneckonců, studium asymptotické hustoty je jedním z předmětů .
rdf:langString Die asymptotische Dichte ist ein zahlentheoretischer Grenzwert, der den Anteil einer Untermenge natürlicher Zahlen an der Menge natürlicher Zahlen angibt.
rdf:langString En teoría de números, la densidad natural (también conocida como densidad asintótica o densidad aritmética) es un método para medir el tamaño de un subconjunto del conjunto de los números naturales. Se basa principalmente en la probabilidad de encontrar miembros del subconjunto deseado cuando se peina el intervalo [1, n] a medida que n crece. Intuitivamente, se piensa que hay más números naturales que cuadrados perfectos, ya que todo cuadrado perfecto es positivo, y además existen muchos otros enteros positivos. Sin embargo, el conjunto de los enteros positivos no es de hecho mayor que el conjunto de los cuadrados perfectos: ambos conjuntos son infinitos y numerables y, por lo tanto, se pueden hacer corresponder elemento a elemento. Sin embargo, si se localizan en el conjunto de los números naturales, los cuadrados se vuelven cada vez más escasos. La noción de densidad natural hace que esta intuición sea precisa para muchos, pero no todos, los subconjuntos de los números naturales (véase , un concepto similar al de densidad natural pero definido para todos los subconjuntos de ). Si se selecciona aleatoriamente un número entero del intervalo [1, n], entonces la probabilidad de que pertenezca a A es la relación entre el número de elementos de A en [1, n] y el número total de elementos en [1, n]. Si esta probabilidad tiende a algún límite cuando n tiende a infinito, entonces este límite se denomina densidad asintótica de A. Esta noción puede entenderse como una especie de probabilidad de elegir un número del conjunto A. De hecho, la densidad asintótica (así como algunos otros tipos de densidades) se estudian en .
rdf:langString In number theory, natural density (also referred to as asymptotic density or arithmetic density) is one method to measure how "large" a subset of the set of natural numbers is. It relies chiefly on the probability of encountering members of the desired subset when combing through the interval [1, n] as n grows large. Intuitively, it is thought that there are more positive integers than perfect squares, since every perfect square is already positive, and many other positive integers exist besides. However, the set of positive integers is not in fact larger than the set of perfect squares: both sets are infinite and countable and can therefore be put in one-to-one correspondence. Nevertheless if one goes through the natural numbers, the squares become increasingly scarce. The notion of natural density makes this intuition precise for many, but not all, subsets of the naturals (see Schnirelmann density, which is similar to natural density but defined for all subsets of ). If an integer is randomly selected from the interval [1, n], then the probability that it belongs to A is the ratio of the number of elements of A in [1, n] to the total number of elements in [1, n]. If this probability tends to some limit as n tends to infinity, then this limit is referred to as the asymptotic density of A. This notion can be understood as a kind of probability of choosing a number from the set A. Indeed, the asymptotic density (as well as some other types of densities) is studied in probabilistic number theory.
rdf:langString En mathématiques, et plus particulièrement en théorie des nombres, la densité asymptotique (ou densité naturelle, ou densité arithmétique) est une façon de mesurer la « taille » de certains sous-ensembles d'entiers naturels. La densité d'un ensemble A peut être vue comme une approximation de la probabilité qu'un entier tiré au hasard dans un intervalle arbitrairement grand appartienne à A ; son étude fait partie de la théorie analytique des nombres.
rdf:langString De asymptotische dichtheid (of natuurlijke dichtheid) is in de getaltheorie een waarde om mee aan te geven hoe 'groot' een deelverzameling van de natuurlijke getallen is.
rdf:langString 정수론에서 점근 밀도(Asymptotic Density 또는 Natural density 또는 arithmetic density)란, 자연수의 부분집합이 얼마나 큰지를 측정하는 척도이다. 직관적으로 완전 제곱수보다는 자연수가 "더 많다". 두 집합은 물론 일대일 대응을 통해 무한하고 가산임을 확인할 수 있으므로 실제로 더 큰 것은 아니다. 그러나 이러한 직관적 관찰을 좀 엄밀히 만들 필요가 있다.
rdf:langString В теории чисел асимптотическая плотность — это одна изхарактеристик, помогающих оценить, насколько велико подмножество множества натуральных чисел . Интуитивно мы ощущаем, что нечётных чисел «больше», чем квадратов; однако множество нечётных чисел в действительности не «больше» множества квадратов: оба множества бесконечны и счётны, и, таким образом, могут быть приведены в соответствие «один к одному» друг с другом. Очевидно, чтобы формализовать наше интуитивное понятие, нам нужен лучший способ. Если мы случайным образом выберем число из множества , то вероятность того, что оно принадлежит A, будет равна отношению количества элементов множества к числу n. Если эта вероятность стремится к некоторому пределу при стремлении n к бесконечности, этот предел называют асимптотической плотностью A. Мы видим, что это понятие может рассматриваться как вероятность выбора числа из множества A. Действительно, асимптотическая плотность (также, как и некоторые другие виды плотности) изучается в (англ. Probabilistic number theory). Асимптотическая плотность отличается, например, от плотности последовательности. Отрицательной стороной такого подхода является то, что асимптотическая плотность определена не для всех подмножеств .
rdf:langString В теорії чисел асимптотична щільність — це одна з характеристик, які допомагають оцінити, наскільки велика підмножина множини натуральних чисел . Інтуїтивно ми відчуваємо, що непарних чисел «більше», ніж квадратів; однак множина непарних чисел насправді не «більша» від множини квадратів: обидві множини нескінченні і зліченні, і, таким чином, можуть бути приведені у відповідність «один до одного» одна з одною. Очевидно, щоб формалізувати наше інтуїтивне поняття, потрібен кращий спосіб. Якщо ми випадковим чином виберемо число з множини , то ймовірність того, що воно належить A, дорівнюватиме відношенню кількості елементів множини до числа n. Якщо ця імовірність прямує до деякої границі при прямуванні n до нескінченності, цю межу називають асимптотичною щільністю A. Очевидно, що це поняття може розглядатися як імовірність вибору числа з множини A. Дійсно, асимптотична щільність (також, як і деякі інші види щільності) вивчається в (англ. Probabilistic number theory). Асимптотична щільність відрізняється, наприклад, від щільності послідовності. Негативною стороною такого підходу є те, що асимптотична щільність визначена не для всіх підмножин .
rdf:langString 自然密度(英語:natural density),又称渐进密度(英語:asymptotic density),是数论中度量自然数子集大小的工具之一。
xsd:nonNegativeInteger 10397

data from the linked data cloud