N-slit interferometric equation

http://dbpedia.org/resource/N-slit_interferometric_equation an entity of type: Artifact100021939

Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns. rdf:langString
rdf:langString N-slit interferometric equation
xsd:integer 25474577
xsd:integer 1113929926
rdf:langString Quantum mechanics was first applied to optics, and interference in particular, by Paul Dirac. Richard Feynman, in his Lectures on Physics, uses Dirac's notation to describe thought experiments on double-slit interference of electrons. Feynman's approach was extended to N-slit interferometers for either single-photon illumination, or narrow-linewidth laser illumination, that is, illumination by indistinguishable photons, by Frank Duarte. The N-slit interferometer was first applied in the generation and measurement of complex interference patterns. In this article the generalized N-slit interferometric equation, derived via Dirac's notation, is described. Although originally derived to reproduce and predict N-slit interferograms, this equation also has applications to other areas of optics.
xsd:nonNegativeInteger 15918

data from the linked data cloud