Musical isomorphism

http://dbpedia.org/resource/Musical_isomorphism

A matemàtiques, el isomorfisme musical és un isomorfisme entre el fibrat tangent i el fibrat cotangent d'una varietat riemanniana, que ve induït per la seva mètrica. rdf:langString
En matemáticas, el isomorfismo musical es un isomorfismo entre el fibrado tangente y el fibrado cotangente de una variedad riemanniana, que viene inducido por su métrica. rdf:langString
In mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle and the cotangent bundle of a pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. The term musical refers to the use of the symbols (flat) and (sharp). In covariant and contravariant notation, it is also known as raising and lowering indices. rdf:langString
L'isomorfismo musicale è un isomorfismo tra uno spazio vettoriale reale e il suo spazio duale che è indotto da una forma bilineare simmetrica non degenere. Nell'ambito della geometria riemanniana, si tratta di un isomorfismo tra il fibrato tangente di una varietà riemanniana e il suo fibrato cotangente che è indotto dalla metrica rdf:langString
En mathématiques, plus précisément en géométrie différentielle, l'isomorphisme musical (ou isomorphisme canonique ) est un isomorphisme entre le fibré tangent et le fibré cotangent d'une variété pseudo-riemannienne induite par son tenseur métrique. Il existe des isomorphismes similaires sur les variétés symplectiques. Le terme musical fait référence à l'utilisation des symboles (plat) et (tranchant). En notation covariante et contravariante, il est également connu sous le nom d'indice d'élévation et d'abaissement. rdf:langString
미분기하학에서 음악 동형(音樂同型, 영어: musical isomorphism)은 매끄러운 다양체의 접다발과 공변접다발 사이의 동형 사상이다. 준 리만 다양체나 심플렉틱 다양체의 경우 표준적인 음악 동형이 존재한다. rdf:langString
Izomorfizm muzyczny – izomorfizm między wiązką styczną a wiązką kostyczną rozmaitości riemannowskiej określony za pomocą jej metryki. Znany jest również jako podnoszenie i opuszczanie wskaźników. rdf:langString
Em matemática, o isomorfismo musical (ou isomorfismo canônico) é um isomorfismo entre o fibrado tangente TM e o fibrado cotangente T∗M e uma variedade de Riemann dada por sua métrica. Existem isomorfismos similares em variedades simpléticas. O termo musical refere-se ao uso dos símbolos e . rdf:langString
在数学中,特別是黎曼幾何跟微分流形的理論裡,音乐同构(Musical isomorphism 或典范同构 canonical isomorphism)是指(伪)黎曼流形 M 的切丛 TM 与余切丛 之间的同构,这个同构由黎曼度量给出。不過一般地,只要流形的切丛上有一个处处非退化的双线性形式(比如辛流形上的辛形式)便可定义这样的同构。在帶有內積(或更一般的,非退化的雙線性形式)的有限維向量空間 ,這些同構自然給出了 和其對偶空間 之間的同構,在這種情況一般稱這些映射為典範同構(canonical isomorphosm)。 這些運算在流形上的張量場理論裡也称为指标的上升和下降。 rdf:langString
rdf:langString Isomorfisme musical
rdf:langString Isomorfismo musical
rdf:langString Isomorfismo musicale
rdf:langString Isomorphisme musical
rdf:langString 음악 동형
rdf:langString Musical isomorphism
rdf:langString Izomorfizm muzyczny
rdf:langString Isomorfismo musical
rdf:langString 音乐同构
xsd:integer 3762980
xsd:integer 1118329642
rdf:langString A matemàtiques, el isomorfisme musical és un isomorfisme entre el fibrat tangent i el fibrat cotangent d'una varietat riemanniana, que ve induït per la seva mètrica.
rdf:langString En matemáticas, el isomorfismo musical es un isomorfismo entre el fibrado tangente y el fibrado cotangente de una variedad riemanniana, que viene inducido por su métrica.
rdf:langString In mathematics—more specifically, in differential geometry—the musical isomorphism (or canonical isomorphism) is an isomorphism between the tangent bundle and the cotangent bundle of a pseudo-Riemannian manifold induced by its metric tensor. There are similar isomorphisms on symplectic manifolds. The term musical refers to the use of the symbols (flat) and (sharp). In covariant and contravariant notation, it is also known as raising and lowering indices.
rdf:langString L'isomorfismo musicale è un isomorfismo tra uno spazio vettoriale reale e il suo spazio duale che è indotto da una forma bilineare simmetrica non degenere. Nell'ambito della geometria riemanniana, si tratta di un isomorfismo tra il fibrato tangente di una varietà riemanniana e il suo fibrato cotangente che è indotto dalla metrica
rdf:langString En mathématiques, plus précisément en géométrie différentielle, l'isomorphisme musical (ou isomorphisme canonique ) est un isomorphisme entre le fibré tangent et le fibré cotangent d'une variété pseudo-riemannienne induite par son tenseur métrique. Il existe des isomorphismes similaires sur les variétés symplectiques. Le terme musical fait référence à l'utilisation des symboles (plat) et (tranchant). En notation covariante et contravariante, il est également connu sous le nom d'indice d'élévation et d'abaissement.
rdf:langString 미분기하학에서 음악 동형(音樂同型, 영어: musical isomorphism)은 매끄러운 다양체의 접다발과 공변접다발 사이의 동형 사상이다. 준 리만 다양체나 심플렉틱 다양체의 경우 표준적인 음악 동형이 존재한다.
rdf:langString Izomorfizm muzyczny – izomorfizm między wiązką styczną a wiązką kostyczną rozmaitości riemannowskiej określony za pomocą jej metryki. Znany jest również jako podnoszenie i opuszczanie wskaźników.
rdf:langString Em matemática, o isomorfismo musical (ou isomorfismo canônico) é um isomorfismo entre o fibrado tangente TM e o fibrado cotangente T∗M e uma variedade de Riemann dada por sua métrica. Existem isomorfismos similares em variedades simpléticas. O termo musical refere-se ao uso dos símbolos e .
rdf:langString 在数学中,特別是黎曼幾何跟微分流形的理論裡,音乐同构(Musical isomorphism 或典范同构 canonical isomorphism)是指(伪)黎曼流形 M 的切丛 TM 与余切丛 之间的同构,这个同构由黎曼度量给出。不過一般地,只要流形的切丛上有一个处处非退化的双线性形式(比如辛流形上的辛形式)便可定义这样的同构。在帶有內積(或更一般的,非退化的雙線性形式)的有限維向量空間 ,這些同構自然給出了 和其對偶空間 之間的同構,在這種情況一般稱這些映射為典範同構(canonical isomorphosm)。 這些運算在流形上的張量場理論裡也称为指标的上升和下降。
xsd:nonNegativeInteger 8234

data from the linked data cloud