Music and mathematics

http://dbpedia.org/resource/Music_and_mathematics

نظرية الموسيقى ليس لديها أسس بديهية أو مُسَلَّمَات في الرياضيات الحديثة، ومع ذلك يمكن وصف أساس الصوت الموسيقي رياضيا (في علم الصوتيات) بحيث يعرض «مجموعة رائعة من خصائص الأعداد». عناصر الموسيقى من الشكل، والإيقاع، والمتر، وطبقات النوتات ووتيرة نبضها يمكن أن تكون مرتبطة بقياس الوقت والتردد، وتقدم نظائر جاهزة في الهندسة. أدت محاولة إنشاء طرق جديدة لتركيب الموسيقى وسماعها والتواصل معها إلى تطبيقات موسيقية لنظرية المجموعات والجبر التجريدي ونظرية الأعداد. قام بعض الملحنين بدمج النسب الذهبية وأعداد فيبوناتشي في عملهم. rdf:langString
Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory. While music theory has no axiomatic foundation in modern mathematics, the basis of musical sound can be described mathematically (using acoustics) and exhibits "a remarkable array of number properties". rdf:langString
Il rapporto tra musica e matematica è stato scoperto in tempi molto antichi, che risalgono al genio di Pitagora. Egli fu il primo a intuire l’esistenza di rapporti numerici tra le frequenze, e tramite questi costruì la prima scala musicale. Questo rapporto venne poi studiato da moltissimi scienziati, filosofi, musicisti quali Tolomeo, Zarlino, Galileo Galilei, Jean-Philippe Rameau, Leibniz, e altri. rdf:langString
Os teóricos da música usam com frequência a matemática para entender a estrutura musical e comunicar novas maneiras de ouvir música. Isto levou a aplicações musicais da teoria dos conjuntos, álgebra abstrata e teoria dos números. Os estudiosos da música também usaram a matemática para entender as escalas musicais, e alguns compositores incorporaram a proporção áurea e o número de Fibonacci em seu trabalho. rdf:langString
Aunque se sabe que los antiguos chinos, egipcios y mesopotámicos estudiaron los principios matemáticos del sonido,​ son los pitagóricos de la Grecia antigua quienes fueron los primeros investigadores de la expresión de las escalas musicales en términos de proporcionalidades [ratio] numéricas,​ particularmente de proporciones de números enteros pequeños. Su doctrina principal era que “toda la naturaleza consiste en armonía que brota de números”.​ rdf:langString
本項目では、音楽と数学の関連性について述べる。 音楽は現代数学の公理的基礎を持たないにもかかわらず、音楽理論家は音楽を理解するために数学を使用することがある。数学は「音の基礎」であり、音楽に存在する音それ自体の配列が注目すべき数的性質を宿している。これは単に自然現象が、驚異的な程に数学的性質を有しているからである。古代中国人、エジプト人、そしてメソポタミア人は音の数学的原理を研究していたことで知られているが、古代ギリシアのピタゴラス教団が数の比率、特に小さな整数の比率による音階の表現を研究した研究者集団として有名である。彼らの教条は「自然界のあらゆる構成物は数から生じるἉρμονία ハルモニア(調和)から成り立っている」というものであった。 プラトンの時代よりハルモニアは自然学(物理学)の基礎部門のひとつとして見なされていた。(なお、この部門は現代では音響学として知られている。)古代のインドや中国の音楽理論家もまた似たような方法論をとった。彼らは皆、和声やリズムの数学的法則が私達の暮らす世界の理解だけでなく、人類自体の理解にとっても不可欠なものであることを示そうと務めた。孔子はピタゴラスと同じく、小さな数である1、2、3、4をあらゆる完全性の根源であるとみなしていた。 rdf:langString
rdf:langString الموسيقى والرياضيات
rdf:langString Música y matemáticas
rdf:langString Rapporto tra musica e matematica
rdf:langString Music and mathematics
rdf:langString 音楽と数学
rdf:langString Música e matemática
xsd:integer 5643937
xsd:integer 1098283960
rdf:langString Dahlhaus, Carl. 1990. Wagners Konzeption des musikalischen Dramas. Deutscher Taschenbuch Verlag. Kassel: Bärenreiter. ; .
rdf:langString نظرية الموسيقى ليس لديها أسس بديهية أو مُسَلَّمَات في الرياضيات الحديثة، ومع ذلك يمكن وصف أساس الصوت الموسيقي رياضيا (في علم الصوتيات) بحيث يعرض «مجموعة رائعة من خصائص الأعداد». عناصر الموسيقى من الشكل، والإيقاع، والمتر، وطبقات النوتات ووتيرة نبضها يمكن أن تكون مرتبطة بقياس الوقت والتردد، وتقدم نظائر جاهزة في الهندسة. أدت محاولة إنشاء طرق جديدة لتركيب الموسيقى وسماعها والتواصل معها إلى تطبيقات موسيقية لنظرية المجموعات والجبر التجريدي ونظرية الأعداد. قام بعض الملحنين بدمج النسب الذهبية وأعداد فيبوناتشي في عملهم.
rdf:langString Aunque se sabe que los antiguos chinos, egipcios y mesopotámicos estudiaron los principios matemáticos del sonido,​ son los pitagóricos de la Grecia antigua quienes fueron los primeros investigadores de la expresión de las escalas musicales en términos de proporcionalidades [ratio] numéricas,​ particularmente de proporciones de números enteros pequeños. Su doctrina principal era que “toda la naturaleza consiste en armonía que brota de números”.​ Desde el tiempo de Platón, la armonía ha sido considerada una rama fundamental de la física, ahora conocida como acústica musical. Tempranos teóricos y muestran acercamientos similares: todos quisieron mostrar que las leyes matemáticas de armonía y ritmos no eran sólo fundamentales para nuestro entendimiento del mundo sino para el bienestar del ser humano.​ Confucio, como Pitágoras, consideraban los números bajos :1, 2, 3, y 4 como la fuente de toda perfección.​ Hoy en la noche , las matemáticas tienen que ver más aún con acústica que con composición, y el uso de matemáticas en composición está históricamente limitada a las operaciones más simples de medir y contar[cita requerida]. El intento de estructurar y comunicar nuevas formas de componer y de escuchar la música ha llevado a las aplicaciones musicales de teoría de conjuntos, álgebra abstracta y teoría de números. Algunos compositores han incorporado la proporción áurea y los números de Fibonacci en su trabajo.​​ La matemática es una de las bases de la música puesto que está presente en diversas áreas de ésta y es evidente en las afinaciones, disposición de notas, acordes y armonías, ritmo, tiempo, y nomenclatura. Además la música moderna proporciona un grado de concentración mayor especialmente en el estudio de las matemáticas
rdf:langString Music theory analyzes the pitch, timing, and structure of music. It uses mathematics to study elements of music such as tempo, chord progression, form, and meter. The attempt to structure and communicate new ways of composing and hearing music has led to musical applications of set theory, abstract algebra and number theory. While music theory has no axiomatic foundation in modern mathematics, the basis of musical sound can be described mathematically (using acoustics) and exhibits "a remarkable array of number properties".
rdf:langString Il rapporto tra musica e matematica è stato scoperto in tempi molto antichi, che risalgono al genio di Pitagora. Egli fu il primo a intuire l’esistenza di rapporti numerici tra le frequenze, e tramite questi costruì la prima scala musicale. Questo rapporto venne poi studiato da moltissimi scienziati, filosofi, musicisti quali Tolomeo, Zarlino, Galileo Galilei, Jean-Philippe Rameau, Leibniz, e altri.
rdf:langString 本項目では、音楽と数学の関連性について述べる。 音楽は現代数学の公理的基礎を持たないにもかかわらず、音楽理論家は音楽を理解するために数学を使用することがある。数学は「音の基礎」であり、音楽に存在する音それ自体の配列が注目すべき数的性質を宿している。これは単に自然現象が、驚異的な程に数学的性質を有しているからである。古代中国人、エジプト人、そしてメソポタミア人は音の数学的原理を研究していたことで知られているが、古代ギリシアのピタゴラス教団が数の比率、特に小さな整数の比率による音階の表現を研究した研究者集団として有名である。彼らの教条は「自然界のあらゆる構成物は数から生じるἉρμονία ハルモニア(調和)から成り立っている」というものであった。 プラトンの時代よりハルモニアは自然学(物理学)の基礎部門のひとつとして見なされていた。(なお、この部門は現代では音響学として知られている。)古代のインドや中国の音楽理論家もまた似たような方法論をとった。彼らは皆、和声やリズムの数学的法則が私達の暮らす世界の理解だけでなく、人類自体の理解にとっても不可欠なものであることを示そうと務めた。孔子はピタゴラスと同じく、小さな数である1、2、3、4をあらゆる完全性の根源であるとみなしていた。 音楽を作曲し、聞く新たな方法を見出す試みは集合論、抽象代数学、数論の音楽への適用を促すこととなった。作曲家の中にはバルトークなど、自身の作品に黄金比やフィボナッチ数を取り入れた者もいる。
rdf:langString Os teóricos da música usam com frequência a matemática para entender a estrutura musical e comunicar novas maneiras de ouvir música. Isto levou a aplicações musicais da teoria dos conjuntos, álgebra abstrata e teoria dos números. Os estudiosos da música também usaram a matemática para entender as escalas musicais, e alguns compositores incorporaram a proporção áurea e o número de Fibonacci em seu trabalho.
xsd:nonNegativeInteger 26925

data from the linked data cloud