Multiple-scale analysis
http://dbpedia.org/resource/Multiple-scale_analysis
In mathematics and physics, multiple-scale analysis (also called the method of multiple scales) comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both for small as well as large values of the independent variables. This is done by introducing fast-scale and slow-scale variables for an independent variable, and subsequently treating these variables, fast and slow, as if they are independent. In the solution process of the perturbation problem thereafter, the resulting additional freedom – introduced by the new independent variables – is used to remove (unwanted) secular terms. The latter puts constraints on the approximate solution, which are called solvability conditions.
rdf:langString
rdf:langString
Multiple-scale analysis
xsd:integer
23923990
xsd:integer
1086654939
rdf:langString
Carson C. Chow
rdf:langString
Multiple scale analysis
rdf:langString
Multiple_scale_analysis
rdf:langString
In mathematics and physics, multiple-scale analysis (also called the method of multiple scales) comprises techniques used to construct uniformly valid approximations to the solutions of perturbation problems, both for small as well as large values of the independent variables. This is done by introducing fast-scale and slow-scale variables for an independent variable, and subsequently treating these variables, fast and slow, as if they are independent. In the solution process of the perturbation problem thereafter, the resulting additional freedom – introduced by the new independent variables – is used to remove (unwanted) secular terms. The latter puts constraints on the approximate solution, which are called solvability conditions. Mathematics research from about the 1980s proposes that coordinate transforms and invariant manifolds provide a sounder support for multiscale modelling (for example, see center manifold and slow manifold).
xsd:nonNegativeInteger
11065