Mollifier
http://dbpedia.org/resource/Mollifier an entity of type: Software
En mathématiques, une suite régularisante est une suite de fonctions régulières utilisées afin de donner une approximation lisse de fonctions généralisées, le plus souvent par convolution afin de lisser les discontinuités.
rdf:langString
数学において、軟化子(なんかし、英: mollifier)あるいは恒等作用素への近似(approximation to the identity)として知られるものは、例えば超函数の理論において、畳み込みを介して、滑らかではない超函数に対する滑らかな函数列を作るために用いられる、特別な性質を備えたある滑らかな函数のことを言う。直感的に、変則的な函数が与えられた際、軟化子との畳み込みを取ることで、その函数は「軟化」される。すなわち、その函数の尖った部分は滑らかなものとなるが、依然として元の滑らかではない超函数に似た性質を保つものが得られる。発見者のの名に因んで、フリードリヒの軟化子(Friedrichs mollifier)とも呼ばれる。
rdf:langString
수학에서 완화자는 분포 이론에서 합성곱으로 매끄럽지 않은 를 근사해 매끄러운 함수의 수열을 만들 때 쓰이는 매끄러운 함수이다. 직관적으로 주어진 불규칙한 함수가 완화자로 합성곱을 취한 함수는 "완화"된 것이다. 즉 원래의 매끄럽지않은 (일반화된) 함수화 가까우면서 그 날카로운 특징이 매끄러워질 것이다. 이것을 만든 (Kurt Otto Friedrichs) 이후 프리드리히 완화자로 불리게 되었다.
rdf:langString
In matematica, più precisamente in analisi funzionale, un mollificatore è una funzione di variabile reale che soddisfa certe proprietà di regolarità e di limitatezza del supporto. Le successioni di mollificatori sono usate spesso per approssimare (in un senso ben preciso) funzioni che presentano delle discontinuità o degli "angoli" mediante funzioni più regolari, che localmente sono costruite tramite una media integrale del valore della funzione nel punto.
rdf:langString
Em matemática, uma aproximação da identidade ou função molificadora é uma função suave com certas propriedades especiais usada para aproximar funções (ou funções generalidas) por funções suaves, via convolução.
rdf:langString
Сглаживающие операторы — это гладкие функции со специальными свойствами, используемые в теории распределений для построения последовательности гладких функций, приближающей негладкую (обобщённую) функцию с помощью свёртки. Интуитивно, имея функцию с особенностями и осуществляя её свёртку со сглаживающей функцией, получаем «сглаженную функцию», в которой особенности исходной функции сглажены, хотя функция остаётся близкой к исходной функции. Операторы известны также как сглаживающие операторы Фридрихса по имени Курта Отто Фридрихса, который рассматривал их в статье 1944 года.
rdf:langString
在数学中,柔化函数(英語:mollifier)是某种特殊的光滑函数。在分布理论中,柔化函数和某个不光滑的目标函数(可以是广义的函数)的卷积将是光滑的,因此通过取一系列的柔化函数,我们可以以卷积的方式来“逼近”目标函数。直觉上,给定某个不光滑的函数,它和柔化函数卷积之后变得“柔滑”了。比如说一个有“棱角”的函数,和柔化函数的卷积将会使得“棱角”被“磨圆”,但这个卷积函数的形状仍然和原来的(广义)函数“大致”一样。最早提出柔化函数概念的数学家是Kurt Otto Friedrichs。
rdf:langString
In mathematics, mollifiers (also known as approximations to the identity) are smooth functions with special properties, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a function which is rather irregular, by convolving it with a mollifier the function gets "mollified", that is, its sharp features are smoothed, while still remaining close to the original nonsmooth (generalized) function.
rdf:langString
rdf:langString
Suite régularisante
rdf:langString
Mollificatore
rdf:langString
완화자
rdf:langString
Mollifier
rdf:langString
軟化子
rdf:langString
Aproximação da identidade
rdf:langString
Сглаживающий оператор
rdf:langString
柔化函数
xsd:integer
1596063
xsd:integer
1123122707
rdf:langString
In mathematics, mollifiers (also known as approximations to the identity) are smooth functions with special properties, used for example in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution. Intuitively, given a function which is rather irregular, by convolving it with a mollifier the function gets "mollified", that is, its sharp features are smoothed, while still remaining close to the original nonsmooth (generalized) function. They are also known as Friedrichs mollifiers after Kurt Otto Friedrichs, who introduced them.
rdf:langString
En mathématiques, une suite régularisante est une suite de fonctions régulières utilisées afin de donner une approximation lisse de fonctions généralisées, le plus souvent par convolution afin de lisser les discontinuités.
rdf:langString
数学において、軟化子(なんかし、英: mollifier)あるいは恒等作用素への近似(approximation to the identity)として知られるものは、例えば超函数の理論において、畳み込みを介して、滑らかではない超函数に対する滑らかな函数列を作るために用いられる、特別な性質を備えたある滑らかな函数のことを言う。直感的に、変則的な函数が与えられた際、軟化子との畳み込みを取ることで、その函数は「軟化」される。すなわち、その函数の尖った部分は滑らかなものとなるが、依然として元の滑らかではない超函数に似た性質を保つものが得られる。発見者のの名に因んで、フリードリヒの軟化子(Friedrichs mollifier)とも呼ばれる。
rdf:langString
수학에서 완화자는 분포 이론에서 합성곱으로 매끄럽지 않은 를 근사해 매끄러운 함수의 수열을 만들 때 쓰이는 매끄러운 함수이다. 직관적으로 주어진 불규칙한 함수가 완화자로 합성곱을 취한 함수는 "완화"된 것이다. 즉 원래의 매끄럽지않은 (일반화된) 함수화 가까우면서 그 날카로운 특징이 매끄러워질 것이다. 이것을 만든 (Kurt Otto Friedrichs) 이후 프리드리히 완화자로 불리게 되었다.
rdf:langString
In matematica, più precisamente in analisi funzionale, un mollificatore è una funzione di variabile reale che soddisfa certe proprietà di regolarità e di limitatezza del supporto. Le successioni di mollificatori sono usate spesso per approssimare (in un senso ben preciso) funzioni che presentano delle discontinuità o degli "angoli" mediante funzioni più regolari, che localmente sono costruite tramite una media integrale del valore della funzione nel punto.
rdf:langString
Em matemática, uma aproximação da identidade ou função molificadora é uma função suave com certas propriedades especiais usada para aproximar funções (ou funções generalidas) por funções suaves, via convolução.
rdf:langString
Сглаживающие операторы — это гладкие функции со специальными свойствами, используемые в теории распределений для построения последовательности гладких функций, приближающей негладкую (обобщённую) функцию с помощью свёртки. Интуитивно, имея функцию с особенностями и осуществляя её свёртку со сглаживающей функцией, получаем «сглаженную функцию», в которой особенности исходной функции сглажены, хотя функция остаётся близкой к исходной функции. Операторы известны также как сглаживающие операторы Фридрихса по имени Курта Отто Фридрихса, который рассматривал их в статье 1944 года.
rdf:langString
在数学中,柔化函数(英語:mollifier)是某种特殊的光滑函数。在分布理论中,柔化函数和某个不光滑的目标函数(可以是广义的函数)的卷积将是光滑的,因此通过取一系列的柔化函数,我们可以以卷积的方式来“逼近”目标函数。直觉上,给定某个不光滑的函数,它和柔化函数卷积之后变得“柔滑”了。比如说一个有“棱角”的函数,和柔化函数的卷积将会使得“棱角”被“磨圆”,但这个卷积函数的形状仍然和原来的(广义)函数“大致”一样。最早提出柔化函数概念的数学家是Kurt Otto Friedrichs。
xsd:nonNegativeInteger
16789