Mixed tensor

http://dbpedia.org/resource/Mixed_tensor an entity of type: WikicatTensors

In tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar. rdf:langString
Em análise tensorial, um tensor misto é um tensor que não é nem estritamente covariante nem estritamente contravariante; pelo menos um dos índices de um tensor misto será um subscrito (covariante) e, pelo menos, um dos índices será um sobrescrito (contravariante). Um tensor misto de tipo ou valência , também escrito "tipo (M, N)", com tanto M > 0 e N > 0, é um tensor o qual tem índices contravariantes M e índices covariantes N. Tal tensor pode ser definido como uma função linearque mapeia um (M + N)-toplo de M formas-um e N vetores a um escalar. rdf:langString
rdf:langString Mixed tensor
rdf:langString Tensor misto
xsd:integer 202772
xsd:integer 1090144047
rdf:langString In tensor analysis, a mixed tensor is a tensor which is neither strictly covariant nor strictly contravariant; at least one of the indices of a mixed tensor will be a subscript (covariant) and at least one of the indices will be a superscript (contravariant). A mixed tensor of type or valence , also written "type (M, N)", with both M > 0 and N > 0, is a tensor which has M contravariant indices and N covariant indices. Such a tensor can be defined as a linear function which maps an (M + N)-tuple of M one-forms and N vectors to a scalar.
rdf:langString Em análise tensorial, um tensor misto é um tensor que não é nem estritamente covariante nem estritamente contravariante; pelo menos um dos índices de um tensor misto será um subscrito (covariante) e, pelo menos, um dos índices será um sobrescrito (contravariante). Um tensor misto de tipo ou valência , também escrito "tipo (M, N)", com tanto M > 0 e N > 0, é um tensor o qual tem índices contravariantes M e índices covariantes N. Tal tensor pode ser definido como uma função linearque mapeia um (M + N)-toplo de M formas-um e N vetores a um escalar.
xsd:nonNegativeInteger 4445

data from the linked data cloud