Meyer wavelet
http://dbpedia.org/resource/Meyer_wavelet an entity of type: WikicatWavelets
Meyerova vlnka je ortogonální symetrická vlnka podobná Shannonově vlnce. Na rozdíl od ní však nedělí spektrum tak ostře. Existuje i její diskrétní aproximace. Vlnku lze použít pro CWT i DWT. Obvykle se počítá ve frekvenční oblasti. Vlastnosti:
* symetrická
* ortogonální, biortogonální
* nemá kompaktní nosič (diskrétní aproximace má)
rdf:langString
The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification. The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function as where There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts The Meyer scale function is given by
rdf:langString
rdf:langString
Meyerova vlnka
rdf:langString
Meyer wavelet
xsd:integer
38833005
xsd:integer
1102863160
rdf:langString
Meyerova vlnka je ortogonální symetrická vlnka podobná Shannonově vlnce. Na rozdíl od ní však nedělí spektrum tak ostře. Existuje i její diskrétní aproximace. Vlnku lze použít pro CWT i DWT. Obvykle se počítá ve frekvenční oblasti. Vlastnosti:
* symetrická
* ortogonální, biortogonální
* nemá kompaktní nosič (diskrétní aproximace má)
rdf:langString
The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification. The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function as where There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts The Meyer scale function is given by In the time domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure:
xsd:nonNegativeInteger
4946