Meyer wavelet

http://dbpedia.org/resource/Meyer_wavelet an entity of type: WikicatWavelets

Meyerova vlnka je ortogonální symetrická vlnka podobná Shannonově vlnce. Na rozdíl od ní však nedělí spektrum tak ostře. Existuje i její diskrétní aproximace. Vlnku lze použít pro CWT i DWT. Obvykle se počítá ve frekvenční oblasti. Vlastnosti: * symetrická * ortogonální, biortogonální * nemá kompaktní nosič (diskrétní aproximace má) rdf:langString
The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification. The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function as where There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts The Meyer scale function is given by rdf:langString
rdf:langString Meyerova vlnka
rdf:langString Meyer wavelet
xsd:integer 38833005
xsd:integer 1102863160
rdf:langString Meyerova vlnka je ortogonální symetrická vlnka podobná Shannonově vlnce. Na rozdíl od ní však nedělí spektrum tak ostře. Existuje i její diskrétní aproximace. Vlnku lze použít pro CWT i DWT. Obvykle se počítá ve frekvenční oblasti. Vlastnosti: * symetrická * ortogonální, biortogonální * nemá kompaktní nosič (diskrétní aproximace má)
rdf:langString The Meyer wavelet is an orthogonal wavelet proposed by Yves Meyer. As a type of a continuous wavelet, it has been applied in a number of cases, such as in adaptive filters, fractal random fields, and multi-fault classification. The Meyer wavelet is infinitely differentiable with infinite support and defined in frequency domain in terms of function as where There are many different ways for defining this auxiliary function, which yields variants of the Meyer wavelet.For instance, another standard implementation adopts The Meyer scale function is given by In the time domain, the waveform of the Meyer mother-wavelet has the shape as shown in the following figure:
xsd:nonNegativeInteger 4946

data from the linked data cloud