Mercer's theorem

http://dbpedia.org/resource/Mercer's_theorem an entity of type: WikicatMathematicalTheorems

Der Satz von Mercer ist eine mathematische Aussage aus dem Teilgebiet der Funktionalanalysis. Er ist benannt nach dem Mathematiker James Mercer und besagt, dass der Integralkern eines positiven, selbstadjungierten Integraloperators als konvergente Reihe über seine Eigenwerte und Eigenvektoren dargestellt werden kann. rdf:langString
En mathématiques et plus précisément en analyse fonctionnelle, le théorème de Mercer est une représentation d'une fonction symétrique de type positif par le carré d'une série convergente de produits de fonctions. Ce théorème est l'un des résultats phares de James Mercer. C'est un outil théorique important dans la théorie des équations intégrales. Il est aussi utilisé dans la théorie hilbertienne des processus stochastiques (voir (en) et Transformée de Karhunen-Loève). rdf:langString
In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel. rdf:langString
rdf:langString Satz von Mercer
rdf:langString Théorème de Mercer
rdf:langString Mercer's theorem
xsd:integer 303990
xsd:integer 1116343803
rdf:langString p/m063440
rdf:langString Mercer theorem
rdf:langString Der Satz von Mercer ist eine mathematische Aussage aus dem Teilgebiet der Funktionalanalysis. Er ist benannt nach dem Mathematiker James Mercer und besagt, dass der Integralkern eines positiven, selbstadjungierten Integraloperators als konvergente Reihe über seine Eigenwerte und Eigenvektoren dargestellt werden kann.
rdf:langString En mathématiques et plus précisément en analyse fonctionnelle, le théorème de Mercer est une représentation d'une fonction symétrique de type positif par le carré d'une série convergente de produits de fonctions. Ce théorème est l'un des résultats phares de James Mercer. C'est un outil théorique important dans la théorie des équations intégrales. Il est aussi utilisé dans la théorie hilbertienne des processus stochastiques (voir (en) et Transformée de Karhunen-Loève).
rdf:langString In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel.
xsd:nonNegativeInteger 10620

data from the linked data cloud