Mean absolute scaled error

http://dbpedia.org/resource/Mean_absolute_scaled_error

In statistics, the mean absolute scaled error (MASE) is a measure of the accuracy of forecasts. It is the mean absolute error of the forecast values, divided by the mean absolute error of the in-sample one-step naive forecast. It was proposed in 2005 by statistician Rob J. Hyndman and Professor of Decision Sciences Anne B. Koehler, who described it as a "generally applicable measurement of forecast accuracy without the problems seen in the other measurements." The mean absolute scaled error has favorable properties when compared to other methods for calculating forecast errors, such as root-mean-square-deviation, and is therefore recommended for determining comparative accuracy of forecasts. rdf:langString
rdf:langString Mean absolute scaled error
xsd:integer 31360933
xsd:integer 1115459604
rdf:langString In statistics, the mean absolute scaled error (MASE) is a measure of the accuracy of forecasts. It is the mean absolute error of the forecast values, divided by the mean absolute error of the in-sample one-step naive forecast. It was proposed in 2005 by statistician Rob J. Hyndman and Professor of Decision Sciences Anne B. Koehler, who described it as a "generally applicable measurement of forecast accuracy without the problems seen in the other measurements." The mean absolute scaled error has favorable properties when compared to other methods for calculating forecast errors, such as root-mean-square-deviation, and is therefore recommended for determining comparative accuracy of forecasts.
xsd:nonNegativeInteger 8540

data from the linked data cloud