Mean

http://dbpedia.org/resource/Mean an entity of type: Thing

Matematiko > Nombro > Meznombro Meznombro de iu aro (el n nombroj) estas nombro, kiu situas inter la plej granda kaj malgranda, kaj estas iasence tipa de la koncerna aro: * Aritmetika meznombro – sumo de ĉiuj nombroj de la aro dividita per n; * Geometria meznombro – la n-a radiko de ilia produto; * Harmona meznombro – inverso de la aritmetika meznombro de la inversoj. * * * * Pesita meznombro * Mediano rdf:langString
Probabilitatean eta estatistikan, aldagai anitzeko banaketa normala — aldagai anitzeko banaketa gaussarra ere deitua— dimentsio bakarreko banaketa normalaren dimentsio handiagoetara orokortzea da. rdf:langString
En matemáticas y estadística, una media o promedio es una medida de tendencia central. Resulta al efectuar una serie determinada de operaciones con un conjunto de números y que, en determinadas condiciones, puede representar por sí solo a todo el conjunto. Existen distintos tipos de medias, tales como la media geométrica, la media ponderada y la media armónica aunque en el lenguaje común, tanto en estadística como en matemáticas la elemental de todas ellas es el término que se refiere generalmente a la media aritmética. rdf:langString
In statistica, la media è un singolo valore numerico che descrive sinteticamente un insieme di dati. Esistono varie tipologie di media che possono essere scelte per descrivere un fenomeno: quelle più comunemente impiegate sono le tre cosiddette medie pitagoriche (aritmetica, geometrica e armonica). Nel linguaggio ordinario, con il termine media si intende comunemente la . È l'indice di posizione più utilizzato. rdf:langString
Bij rekenen en in de wiskunde is het gemiddelde of de gemiddelde waarde een begrip dat veelvuldig voorkomt. Het bekendste is het rekenkundig gemiddelde: de som van een aantal getallen gedeeld door het aantal getallen. rdf:langString
Ett medelvärde eller medium är ett lägesmått för ett genomsnittligt värde av ett urval eller en population. I dagligt tal menar man med medelvärde normalt det aritmetiska medelvärdet. I fall där variationen är stor kan ibland medianen vara mera meningsfull. rdf:langString
Сре́днее значе́ние — числовая характеристика множества чисел или функций (в математике); — некоторое число, заключённое между наименьшим и наибольшим из их значений. Часто обозначается либо чертой сверху: , либо угловыми скобками: . rdf:langString
平均数(英語:Mean, Average,或稱平均值)是统计中的一个重要概念。为集中趋势的最常用测度值,目的是确定一组数据的均衡点。 rdf:langString
في علم الإحصاء، لدى المتوسط ثلاثة معانٍ متصلة: * المتوسط الحسابي لعينة (تتميز عن المتوسط الهندسي أو المتوسط التوافقي. * القيمة المتوقَعة للمتغير العشوائي. * متوسط التوزيع الاحتمالي (probability distribution). هناك مقاييس إحصائية أخرى من النزعة المركزية (central tendency) التي يجب ألا تختلط بالمتوسطات - بما في ذلك 'الوسيط و'المنوال'. تستخدم التحليلات الإحصائية أيضًا عادةً مقاييس التشتت (dispersion)، مثل المدى (range), أو المدى الربيعي (interquartile range), أو الانحراف المعياري. لاحظ أنه ليس كل التوزيع الاحتمالي (probability distribution) لديه متوسط محدد؛ انظر توزيع كوشي على سبيل المثال. rdf:langString
En estadística, el concepte de mitjana té dos significats estretament relacionats: * El de mitjana aritmètica (que no és el mateix que la mitjana geomètrica o la mitjana harmònica) * El d'esperança matemàtica d'una variable aleatòria Hi ha altres mesures estadístiques que no s'han de confondre amb mitjanes, entre elles la mediana i la moda. Altres anàlisis estadístiques simples fan servir mesures de dispersió, com ara l', l'amplitud interquartílica o la desviació tipus. rdf:langString
Ein Mittelwert (kurz auch nur Mittel; anderes Wort Durchschnitt) ist eine Zahl, die aus gegebenen Zahlen nach einer bestimmten Rechenvorschrift ermittelt wird. Gebräuchlich sind Rechenvorschriften für das arithmetische, das geometrische und das quadratische Mittel. Mit dem Wort Mittel oder Durchschnitt ist meistens das arithmetische Mittel gemeint. In der Statistik ist der Mittelwert einer der Parameter, die den typischen Wert einer Verteilung charakterisieren, bzw. die die zentrale Tendenz einer Verteilung zum Ausdruck bringen (Lageparameter). rdf:langString
There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. Outside probability and statistics, a wide range of other notions of mean are often used in geometry and mathematical analysis; examples are given below. rdf:langString
En mathématiques, la moyenne est un outil de calcul permettant de résumer une liste de valeurs numériques en un seul nombre réel, indépendamment de l’ordre dans lequel la liste est donnée. Par défaut, il s’agit de la moyenne arithmétique, qui se calcule comme la somme des termes de la liste, divisée par le nombre de termes. D’autres moyennes peuvent être plus adaptées selon les contextes. La notion de moyenne s’étend aux fonctions avec la valeur moyenne, en géométrie classique avec le barycentre et en théorie des probabilités avec l’espérance d’une variable aléatoire. rdf:langString
У математиці сере́днє зна́чення (англ. mean) має різні визначення в залежності від контексту. У теорії ймовірностей та статистиці середнє значення та математичне сподівання використовуються як синоніми для позначення мір центральної тенденції або розподілу ймовірностей, або випадкової змінної, що характеризується цим розподілом. У випадку дискретного розподілу ймовірності випадкової змінної X середнє значення дорівнює сумі по всім можливим значенням, зважених відповідно до ймовірності цих значень; тобто, воно обчислюється взяттям добутку кожного можливого значення x випадкової величини X та його ймовірності P(x), і наступним сумуванням всіх цих добутків разом, даючи . Аналогічна формула застосовується й у випадку неперервного розподілу ймовірності. Не кожен розподіл імовірності має визначе rdf:langString
rdf:langString Mean
rdf:langString متوسط (إحصاء)
rdf:langString Mitjana
rdf:langString Mittelwert
rdf:langString Meznombro
rdf:langString Media (matemáticas)
rdf:langString Aldagai anitzeko banaketa normal
rdf:langString Moyenne
rdf:langString Media (statistica)
rdf:langString Gemiddelde
rdf:langString Среднее значение
rdf:langString Medelvärde
rdf:langString 平均数
rdf:langString Середнє значення
xsd:integer 19192
xsd:integer 1122036912
rdf:langString grid-column-start: 2;margin-top:auto;margin-bottom:auto;text-align:left;
rdf:langString grid-column-start: 1;margin-top:auto;margin-bottom:auto;text-align:right;
rdf:langString في علم الإحصاء، لدى المتوسط ثلاثة معانٍ متصلة: * المتوسط الحسابي لعينة (تتميز عن المتوسط الهندسي أو المتوسط التوافقي. * القيمة المتوقَعة للمتغير العشوائي. * متوسط التوزيع الاحتمالي (probability distribution). هناك مقاييس إحصائية أخرى من النزعة المركزية (central tendency) التي يجب ألا تختلط بالمتوسطات - بما في ذلك 'الوسيط و'المنوال'. تستخدم التحليلات الإحصائية أيضًا عادةً مقاييس التشتت (dispersion)، مثل المدى (range), أو المدى الربيعي (interquartile range), أو الانحراف المعياري. لاحظ أنه ليس كل التوزيع الاحتمالي (probability distribution) لديه متوسط محدد؛ انظر توزيع كوشي على سبيل المثال. لمجموعة البيانات (data set)، المتوسط الحسابي يساوي مجموع القيم مقسوما على عدد القيم. المتوسط الحسابي لمجموعة من الأرقام x1, x2, ..., xn يُشار إليه عادةً بـ، وتُنطَق "x bar". إذا اعتمدت مجموعة البيانات على مجموعة من الملاحظات التي حصلت عليها العينة من التعداد السكاني (statistical population), يُطلَق على المتوسط الحسابي «متوسط العينة» (sample mean) لتمييزها عن «متوسط السكان» (population mean) ( أو x). بالنسبة لعدد السكان المحدود، يتساوى متوسط سكان عقار مع المتوسط الحسابي للعقار المُعطَى مع الأخذ في الاعتبار كل فرد من السكان. على سبيل المثال، يتساوى متوسط ارتفاع السكان مع مجموع ارتفاعات كل فرد مقسومًا على العدد الكلي للأفراد. قد يختلف متوسط العينة عن متوسط السكان، خاصًة للعينات الصغيرة. يملي قانون الأعداد الكبيرة إنه كلما ازداد حجم العينة، كان متوسط العينة أقرب إلى متوسط السكان. بالنسبة إلى التوزيع الاحتمالي، يتساوى المتوسط مع مجموع أو تكامل كل قيمة ممكنة ترجحها احتمالية هذه القيمة. في حالة وجود التوزيع الاحتمالي المنفصل، يُحسَب متوسط المتغير العشوائي المنفصل x عن طريق أخذ نتاج كل قيمة ممكن من x واحتمالها P(x), ثم إضافة جميع هذا النتاج معًا، معطيةً . بالإضافة إلى علم الإحصاء، تُستَخدم المتوسطات في الهندسة والتحليل، وقد تم تطوير مجموعة واسعة من المتوسطات لهذه الأغراض، والتي لا تستخدم كثيرًا في مجال علم الإحصاء. يتم سرد أمثلة من المتوسطات أدناه.
rdf:langString En estadística, el concepte de mitjana té dos significats estretament relacionats: * El de mitjana aritmètica (que no és el mateix que la mitjana geomètrica o la mitjana harmònica) * El d'esperança matemàtica d'una variable aleatòria Hi ha altres mesures estadístiques que no s'han de confondre amb mitjanes, entre elles la mediana i la moda. Altres anàlisis estadístiques simples fan servir mesures de dispersió, com ara l', l'amplitud interquartílica o la desviació tipus. Per una variable aleatòria de valor real X, la mitjana és l'esperança de X. Cal notar que no totes les distribucions de probabilitat tenen una mitjana definida (o variància), com per exemple la distribució de Cauchy. Per a un , la mitjana és la suma de tots els valors dividida pel nombre de valors del conjunt. La mitjana d'un conjunt de dades es denota normalment com . Aquesta mitjana és un tipus de mitjana aritmètica. Si el conjunt de dades estigués basat en una sèrie d'observacions obtinguda pel mostreig d'una població estadística, llavors aquesta mitjana s'anomena mitjana mostral per distingir-la de la mitjana poblacional o x). La mitjana se sol donar juntament amb la desviació tipus, ja que la primera descriu la localització central de les dades i la segona en descriu la dispersió. Una mesura alternativa de la dispersió és la desviació mitjana, que equival a la mitjana de la mitjana: és menys sensible als valors extrems, però matemàticament no és tan amigable per tractar-la. Si es pren una sèrie d'observacions com a mostra d'una població més gran (per exemple, agafant les alçades d'una mostra d'adults de la població mundial) o bé d'una distribució de probabilitat, llavors la població major es pot utilitzar per construir una "mitjana poblacional" que alhora és el valor esperat per la mostra extreta d'aquesta població. Per una població finita això seria simplement la mitjana aritmètica de la propietat en qüestió per a cada membre de la població; per una distribució de probabilitat, d'altra banda, seria la suma (o integral) sobre cada valor possible ponderat per la probabilitat d'aquest valor. És convenció universal representar la mitjana poblacional per . En cas d'una , la mitjana d'una variable aleatòria discreta x s'obté agafant el producte de cada valor possible de x i la seva probabilitat P(x), i afegint tots aquests valors junts, donant . La mitjana mostral pot diferir de la mitjana poblacional —especialment per mostres reduïdes—, però la llei dels grans nombres dicta que, com més gran és la mostra, més probable és que la mitjana mostral serà igual a la mitjana poblacional. Les mitjanes també s'usen en camps diferents de l'estadística, com en geometria i anàlisi, per la qual cosa se n'han desenvolupat molts tipus, els quals es llisten a continuació.
rdf:langString Ein Mittelwert (kurz auch nur Mittel; anderes Wort Durchschnitt) ist eine Zahl, die aus gegebenen Zahlen nach einer bestimmten Rechenvorschrift ermittelt wird. Gebräuchlich sind Rechenvorschriften für das arithmetische, das geometrische und das quadratische Mittel. Mit dem Wort Mittel oder Durchschnitt ist meistens das arithmetische Mittel gemeint. In der Statistik ist der Mittelwert einer der Parameter, die den typischen Wert einer Verteilung charakterisieren, bzw. die die zentrale Tendenz einer Verteilung zum Ausdruck bringen (Lageparameter). Eng verwandt ist der arithmetische Mittelwert mit dem Erwartungswert einer Verteilung. Während der Mittelwert aus konkreten vorliegenden Zahlenwerten ermittelt wird, beruht der Erwartungswert auf der theoretisch zu erwartenden Häufigkeit.
rdf:langString Matematiko > Nombro > Meznombro Meznombro de iu aro (el n nombroj) estas nombro, kiu situas inter la plej granda kaj malgranda, kaj estas iasence tipa de la koncerna aro: * Aritmetika meznombro – sumo de ĉiuj nombroj de la aro dividita per n; * Geometria meznombro – la n-a radiko de ilia produto; * Harmona meznombro – inverso de la aritmetika meznombro de la inversoj. * * * * Pesita meznombro * Mediano
rdf:langString Probabilitatean eta estatistikan, aldagai anitzeko banaketa normala — aldagai anitzeko banaketa gaussarra ere deitua— dimentsio bakarreko banaketa normalaren dimentsio handiagoetara orokortzea da.
rdf:langString En matemáticas y estadística, una media o promedio es una medida de tendencia central. Resulta al efectuar una serie determinada de operaciones con un conjunto de números y que, en determinadas condiciones, puede representar por sí solo a todo el conjunto. Existen distintos tipos de medias, tales como la media geométrica, la media ponderada y la media armónica aunque en el lenguaje común, tanto en estadística como en matemáticas la elemental de todas ellas es el término que se refiere generalmente a la media aritmética.
rdf:langString There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the arithmetic mean, also known as "arithmetic average", is a measure of central tendency of a finite set of numbers: specifically, the sum of the values divided by the number of values. The arithmetic mean of a set of numbers x1, x2, ..., xn is typically denoted using an overhead bar, . If the data set were based on a series of observations obtained by sampling from a statistical population, the arithmetic mean is the sample mean to distinguish it from the mean, or expected value, of the underlying distribution, the population mean (denoted or ). Outside probability and statistics, a wide range of other notions of mean are often used in geometry and mathematical analysis; examples are given below.
rdf:langString En mathématiques, la moyenne est un outil de calcul permettant de résumer une liste de valeurs numériques en un seul nombre réel, indépendamment de l’ordre dans lequel la liste est donnée. Par défaut, il s’agit de la moyenne arithmétique, qui se calcule comme la somme des termes de la liste, divisée par le nombre de termes. D’autres moyennes peuvent être plus adaptées selon les contextes. La moyenne est un des premiers indicateurs statistiques pour une série de nombres. Lorsque ces nombres représentent une quantité partagée entre des individus, la moyenne exprime la valeur qu’aurait chacun si le partage était équitable. La notion de moyenne s’étend aux fonctions avec la valeur moyenne, en géométrie classique avec le barycentre et en théorie des probabilités avec l’espérance d’une variable aléatoire.
rdf:langString In statistica, la media è un singolo valore numerico che descrive sinteticamente un insieme di dati. Esistono varie tipologie di media che possono essere scelte per descrivere un fenomeno: quelle più comunemente impiegate sono le tre cosiddette medie pitagoriche (aritmetica, geometrica e armonica). Nel linguaggio ordinario, con il termine media si intende comunemente la . È l'indice di posizione più utilizzato.
rdf:langString Bij rekenen en in de wiskunde is het gemiddelde of de gemiddelde waarde een begrip dat veelvuldig voorkomt. Het bekendste is het rekenkundig gemiddelde: de som van een aantal getallen gedeeld door het aantal getallen.
rdf:langString Ett medelvärde eller medium är ett lägesmått för ett genomsnittligt värde av ett urval eller en population. I dagligt tal menar man med medelvärde normalt det aritmetiska medelvärdet. I fall där variationen är stor kan ibland medianen vara mera meningsfull.
rdf:langString Сре́днее значе́ние — числовая характеристика множества чисел или функций (в математике); — некоторое число, заключённое между наименьшим и наибольшим из их значений. Часто обозначается либо чертой сверху: , либо угловыми скобками: .
rdf:langString У математиці сере́днє зна́чення (англ. mean) має різні визначення в залежності від контексту. У теорії ймовірностей та статистиці середнє значення та математичне сподівання використовуються як синоніми для позначення мір центральної тенденції або розподілу ймовірностей, або випадкової змінної, що характеризується цим розподілом. У випадку дискретного розподілу ймовірності випадкової змінної X середнє значення дорівнює сумі по всім можливим значенням, зважених відповідно до ймовірності цих значень; тобто, воно обчислюється взяттям добутку кожного можливого значення x випадкової величини X та його ймовірності P(x), і наступним сумуванням всіх цих добутків разом, даючи . Аналогічна формула застосовується й у випадку неперервного розподілу ймовірності. Не кожен розподіл імовірності має визначене середнє значення; див., наприклад, розподіл Коші. Більше того, для деяких розподілів середнє значення є нескінченним: наприклад, коли ймовірність значення є для n = 1, 2, 3, … Для набору даних для позначення центрального значення дискретного набору чисел, а саме, суми цих значень, поділеної на їхню кількість, також використовуються як синоніми терміни середнє арифметичне та математичне сподівання. Середнє арифметичне набору чисел x1, x2, …, xn зазвичай позначають через , вимовляючи як «x із рискою». Якщо набір даних ґрунтувався на ряді спостережень, отриманих вибіркою зі генеральної сукупності, то середнє арифметичне називається вибірковим середнім (англ. sample mean, позначається через ), щоби відрізняти його від середнього значення генеральної сукупності (англ. population mean, позначається через або ). Для скінченної сукупності середнє значення генеральної сукупності за певною властивістю дорівнює середньому арифметичному даної властивості за всіма членами цієї сукупності. Наприклад, середнє значення зросту для сукупності дорівнює сумі зростів кожної особи, діленої на загальну кількість осіб. Вибіркове середнє може відрізнятися від середнього сукупності, особливо для малих вибірок. Закон великих чисел каже, що чим більшим є розмір вибірки, тим правдоподібнішою є близькість вибіркового середнього до середнього сукупності. За межами теорії ймовірностей та статистики широкий спектр інших значень «середнього» часто використовується в геометрії та математичному аналізі; нижче наведено приклади.
rdf:langString 平均数(英語:Mean, Average,或稱平均值)是统计中的一个重要概念。为集中趋势的最常用测度值,目的是确定一组数据的均衡点。
rdf:langString maximum of
rdf:langString minimum of
xsd:nonNegativeInteger 14930

data from the linked data cloud