Maximin share
http://dbpedia.org/resource/Maximin_share an entity of type: Thing
Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the 1-out-of-n maximin-share is the maximum value that can be gained by partitioning the items into n parts and taking the part with the minimum value.
rdf:langString
Максиминимизация долей (ММД, англ. Maximin share, MMS) — это критерий справедливого распределения объектов. Если дано множество объектов с различными значениями, 1-из-n maximin-доля означает наибольшее значение, которое может быть получено путём разбиения объектов на n частей и выбора части с минимальным значением.
rdf:langString
rdf:langString
Maximin share
rdf:langString
Максиминимизация долей
xsd:integer
62435420
xsd:integer
1104430051
rdf:langString
Maximin share (MMS) is a criterion of fair item allocation. Given a set of items with different values, the 1-out-of-n maximin-share is the maximum value that can be gained by partitioning the items into n parts and taking the part with the minimum value. An allocation of items among n agents with different valuations is called MMS-fair if each agent gets a bundle that is at least as good as his/her 1-out-of-n maximin-share. MMS fairness was invented by Eric Budish as a relaxation of the criterion of proportionality - each agent gets a bundle that is at least as good as the equal split (1/n of every resource). Proportionality can be guaranteed when the items are divisible, but not when they are indivisible, even if all agents have identical valuations. In contrast, MMS fairness can always be guaranteed to identical agents, so it is a natural alternative to proportionality even when the agents are different.
rdf:langString
Максиминимизация долей (ММД, англ. Maximin share, MMS) — это критерий справедливого распределения объектов. Если дано множество объектов с различными значениями, 1-из-n maximin-доля означает наибольшее значение, которое может быть получено путём разбиения объектов на n частей и выбора части с минимальным значением. Распределение объектов среди n агентов с различными оценками называется ММД-справедливым, если каждый агент получает набор, который по меньшей мере так же хорош, как его 1-из-n maximin-доля. ММД-справедливость предложил Эрик Будиш как ослабление критерия пропорциональности — каждый агент получает набор со значением, не меньшим равного распределения (1/n каждого ресурса). Пропорциональность можно гарантировать, если объекты делимы, но не в случае их неделимости, даже если все агенты имеют идентичные оценки. Для контраста ММД-справедливость можно всегда гарантировать для идентичных агентов, так что это естественная альтернатива пропорциональности, если даже агенты различны.
xsd:nonNegativeInteger
59141