Maximal subgroup

http://dbpedia.org/resource/Maximal_subgroup an entity of type: WikicatSubgroupProperties

In der Gruppentheorie heißt eine Untergruppe einer gegebenen Gruppe maximal, wenn es keine echt zwischen und liegende Untergruppe gibt. Also die Untergruppe ist eine maximale Untergruppe von , wenn gilt und es keine echt größere Untergruppe mit gibt. rdf:langString
In mathematics, the term maximal subgroup is used to mean slightly different things in different areas of algebra. In group theory, a maximal subgroup H of a group G is a proper subgroup, such that no proper subgroup K contains H strictly. In other words, H is a maximal element of the partially ordered set of subgroups of G that are not equal to G. Maximal subgroups are of interest because of their direct connection with primitive permutation representations of G. They are also much studied for the purposes of finite group theory: see for example Frattini subgroup, the intersection of the maximal subgroups. rdf:langString
rdf:langString Maximale Untergruppe
rdf:langString Maximal subgroup
xsd:integer 1472649
xsd:integer 1123912341
rdf:langString In der Gruppentheorie heißt eine Untergruppe einer gegebenen Gruppe maximal, wenn es keine echt zwischen und liegende Untergruppe gibt. Also die Untergruppe ist eine maximale Untergruppe von , wenn gilt und es keine echt größere Untergruppe mit gibt.
rdf:langString In mathematics, the term maximal subgroup is used to mean slightly different things in different areas of algebra. In group theory, a maximal subgroup H of a group G is a proper subgroup, such that no proper subgroup K contains H strictly. In other words, H is a maximal element of the partially ordered set of subgroups of G that are not equal to G. Maximal subgroups are of interest because of their direct connection with primitive permutation representations of G. They are also much studied for the purposes of finite group theory: see for example Frattini subgroup, the intersection of the maximal subgroups. In semigroup theory, a maximal subgroup of a semigroup S is a subgroup (that is, a subsemigroup which forms a group under the semigroup operation) of S which is not properly contained in another subgroup of S. Notice that, here, there is no requirement that a maximal subgroup be proper, so if S is in fact a group then its unique maximal subgroup (as a semigroup) is S itself. Considering subgroups, and in particular maximal subgroups, of semigroups often allows one to apply group-theoretic techniques in semigroup theory. There is a one-to-one correspondence between idempotent elements of a semigroup and maximal subgroups of the semigroup: each idempotent element is the identity element of a unique maximal subgroup.
xsd:nonNegativeInteger 3868

data from the linked data cloud