Martingale central limit theorem

http://dbpedia.org/resource/Martingale_central_limit_theorem

In probability theory, the central limit theorem says that, under certain conditions, the sum of many independent identically-distributed random variables, when scaled appropriately, converges in distribution to a standard normal distribution. The martingale central limit theorem generalizes this result for random variables to martingales, which are stochastic processes where the change in the value of the process from time t to time t + 1 has expectation zero, even conditioned on previous outcomes. rdf:langString
鞅中心极限定理是概率论中的一个定理,对有界的随机变量而言,常见的经典中心极限定理是它的特殊情形。经典中心极限定理说,在一定条件下,独立同分布(i.i.d.)的随机变量之和,乘以适当的标准化因数后,会依分布收敛于标准正态分布 。而鞅中心极限定理将独立性假设放宽为:这些随机变量只需构成一个鞅中的随机增量(鞅是一种随机过程 ,其从时间 到时间 的增量,在给定时间 1 到 观测值的条件下,其条件数学期望为零)。 rdf:langString
rdf:langString Martingale central limit theorem
rdf:langString 鞅中心极限定理
xsd:integer 2839480
xsd:integer 1122144110
rdf:langString In probability theory, the central limit theorem says that, under certain conditions, the sum of many independent identically-distributed random variables, when scaled appropriately, converges in distribution to a standard normal distribution. The martingale central limit theorem generalizes this result for random variables to martingales, which are stochastic processes where the change in the value of the process from time t to time t + 1 has expectation zero, even conditioned on previous outcomes.
rdf:langString 鞅中心极限定理是概率论中的一个定理,对有界的随机变量而言,常见的经典中心极限定理是它的特殊情形。经典中心极限定理说,在一定条件下,独立同分布(i.i.d.)的随机变量之和,乘以适当的标准化因数后,会依分布收敛于标准正态分布 。而鞅中心极限定理将独立性假设放宽为:这些随机变量只需构成一个鞅中的随机增量(鞅是一种随机过程 ,其从时间 到时间 的增量,在给定时间 1 到 观测值的条件下,其条件数学期望为零)。
xsd:nonNegativeInteger 3587

data from the linked data cloud