Marine microorganisms

http://dbpedia.org/resource/Marine_microorganisms an entity of type: Thing

Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism (or microbe) is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify biologically active entities such as viruses and viroids as microorganisms, but others consider these as non-living. rdf:langString
해양 미생물(marine microorganisms)은 해양환경에 의해서, 즉 바다의 짠물이나 해안 하구의 염분이 섞인 바다의 미생물로 정의된다. 미생물은 배율없이 육안으로 보기에는 너무 작은 미세한 살아있는 유기체 또는 바이러스이다. 미생물은 매우 다양하다. 미생물은 단세포이거나 다세포일 수 있으며 박테리아, 고세균, 바이러스 및 대부분의 원생생물뿐만 아니라 일부 진균류, 조류 및 회전체 및 코페포드와 같은 동물을 포함한다. 많은 거식적 동물과 식물은 어린 시절의 미세한 단계를 갖고 있다. 몇몇 미생물학자들은 바이러스와 바이로이드와 같은 생물학적 활성 개체를 미생물로 분류하지만, 다른 이들은 그것들이 살아있지 않다고 여긴다. 해양 미생물은 바다에서 약 70% 또는 약 90%의 바이오매스(생물량)을 이루는 것으로 다양하게 추정되었다. 함께 취합하면 해양 미생물이 형성된다. rdf:langString
I microrganismi marini sono definiti dal loro habitat come microrganismi che vivono in un ambiente marino, cioè nell'acqua salata di un mare o oceano o nell'acqua salmastra di un estuario costiero. Un microrganismo (o microbo ) è qualsiasi organismo vivente microscopico o virus, che è troppo piccolo per essere visto a occhio nudo senza ingrandimento. I microrganismi sono molto diversi e possono essere unicellulari o multicellulari ed includere batteri, archaea, i virus e la maggior parte dei protozoi, nonché alcuni funghi, alghe e animali, come rotiferi e copepodi. rdf:langString
rdf:langString Marine microorganisms
rdf:langString Microrganismi marini
rdf:langString 해양 미생물
xsd:integer 32000533
xsd:integer 1123482916
rdf:langString left
rdf:langString right
rdf:langString Armoured
rdf:langString Bacteria can be beneficial. This Pompeii worm, an extremophile found only at hydrothermal vents, has a protective cover of symbiotic bacteria.
rdf:langString ---- 16px Where Did Eukaryotic Cells Come From? – Journey to the Microcosmos
rdf:langString High volumes of plankton samples can be analysed rapidly
rdf:langString Microbial mats are the earliest form of life on Earth for which there is good fossil evidence. The image shows a cyanobacterial-algal mat.
rdf:langString ...and defensive spines
rdf:langString ...can have more than one nucleus
rdf:langString ...extinct fossil
rdf:langString ...have plates called coccoliths
rdf:langString Pelagibacter ubique, the most common bacterium in the ocean
rdf:langString Diagram of a typical tailed phage
rdf:langString Haeckel Peridinea
rdf:langString High volumes of plankton samples can also be analysed rapidly with sequencing techniques.
rdf:langString Black smoker in the High Rise portion of the Endeavour Hydrothermal Vents.
rdf:langString Naked amoeba, Chaos sp.
rdf:langString The tiny cyanobacterium Prochlorococcus is a major contributor to atmospheric oxygen
rdf:langString Shell micrographs
rdf:langString Shell of a spherical radiolarian
rdf:langString Suggested explanation for glowing seas
rdf:langString Testate amoeba, Cyphoderia sp.
rdf:langString Unarmored dinoflagellates Kofoid
rdf:langString Unarmoured
rdf:langString White Phaeocystis algal foam washing up on a beach
rdf:langString cell schematic
rdf:langString micrograph
rdf:langString Stromatolites are formed from microbial mats as microbes slowly move upwards to avoid being smothered by sediment.
rdf:langString using modern imaging techniques.
rdf:langString Marinomonas arctica, a bacterium which grows inside Arctic sea ice at subzero temperatures
rdf:langString NASA image of a large bloom of Nodularia cyanobacteria swirling in the Baltic Sea
rdf:langString A surf wave at night sparkles with blue light due to the presence of a bioluminescent dinoflagellate, such as Lingulodinium polyedrum
rdf:langString Parakaryon myojinensis, a possible transitional form between a prokaryote and a eukaryote
rdf:langString Multiple phages attached to a bacterial cell wall at 200,000x magnification 330px
rdf:langString Cyanobacteria from a microbial mat. Cyanobacteria were the first organisms to release oxygen via photosynthesis
rdf:langString Acantharian radiolarian hosts Phaeocystis symbionts
rdf:langString center
rdf:langString horizontal
rdf:langString vertical
rdf:langString horizontal/vertical
rdf:langString left
rdf:langString right
rdf:langString Drawings by Haeckel 1904
rdf:langString It would be difficult to consistently separate out these two microbes using images alone. However, if their barcodes are aligned to each other and their bases are coloured to see them more clearly, it becomes easy to see which bases are different between these two microbes. In this manner, millions of different kinds of microbes can be distinguished. thumb|320px|right|
rdf:langString Amoeba can be shelled or naked
rdf:langString Phage injecting its genome into bacteria
rdf:langString Diatoms have a silica shell with radial or bilateral symmetry
rdf:langString closely replicate some radiolarian shell patterns
rdf:langString Foraminiferans are important unicellular zooplankton [[#Marine protists
rdf:langString Computer simulations of Turing patterns on a sphere
rdf:langString Traditionally dinoflagellates have been presented as armoured or unarmoured
rdf:langString Choanoflagellates, unicellular "collared" flagellate protists, are thought to be the closest living relatives of the animals.
rdf:langString Coccolithophores build calcite skeletons important to the marine carbon cycle
rdf:langString center
rdf:langString left
rdf:langString Bacteriophages
rdf:langString Cyanobacteria
rdf:langString Diatoms
rdf:langString Dinoflagellates
rdf:langString Foraminiferan shapes
rdf:langString Foraminiferans
rdf:langString Barcoding
rdf:langString Coccolithophores
rdf:langString Ciliate shapes
rdf:langString Diatom shapes
rdf:langString Dinoflagellate shapes
rdf:langString Mixotrophic radiolarians
rdf:langString Radiolarian shapes
rdf:langString Shelled and naked amoeba
rdf:langString Turing and radiolarian morphology
rdf:langString microbial mats
rdf:langString center
xsd:integer 9
rdf:langString Foram-globigerina hg.jpg
rdf:langString G bulloides Brady 1884.jpg
rdf:langString Haeckel Thalamophora 12.jpg
rdf:langString Haeckel Thalamphora.jpg
rdf:langString Alvinella pompejana01.jpg
rdf:langString Centric diatom .jpg
rdf:langString Chaos carolinense.jpg
rdf:langString Codosiga.jpg
rdf:langString Cronoflagelado2.svg
rdf:langString Cyanobacteria guerrero negro.jpg
rdf:langString Cyanobacterial-algal mat.jpg
rdf:langString Cyphoderia ampulla - Testate amoeba - 160x .jpg
rdf:langString Dinoflagellate lumincescence 2.jpg
rdf:langString Discoaster surculus 01.jpg
rdf:langString Ecomare - schuimalg strand .jpg
rdf:langString Gymnodinium agile sp.jpg
rdf:langString Haeckel Ciliata.jpg
rdf:langString Haeckel Diatomea 4.jpg
rdf:langString Haeckel Diatomea.jpg
rdf:langString Haeckel Peridinea.jpg
rdf:langString Haeckel Phaeodaria 1.jpg
rdf:langString Haeckel Stephoidea edit.jpg
rdf:langString High Rise black smoker.jpg
rdf:langString High throughput imaging of plankton samples.png
rdf:langString High throughput sequencing of plankton samples.png
rdf:langString Kofoid swezy plate 3.jpg
rdf:langString Marinomonas arctica.jpg
rdf:langString Nodularia bloom.jpg
rdf:langString Parakaryon myojinensis drawing.svg
rdf:langString Pelagibacter 2.jpg
rdf:langString Pennate diatoms .jpg
rdf:langString Peridinium digitale.jpg
rdf:langString Phage.jpg
rdf:langString Prochlorococcus marinus .jpg
rdf:langString Radiolarians - Actinomma sol .jpg
rdf:langString Spherical radiolarian.jpg
rdf:langString Stromatolites in Sharkbay.jpg
rdf:langString Tailed phage.png
rdf:langString Potential Mechanism for Dazzling Blue Flashes of Light in Oceans Identified .jpg
rdf:langString Phaeocystis symbionts within an acantharian host.png
xsd:integer 1
xsd:integer 2
xsd:integer 3
<second> 1.1991888E17
rdf:langString While recent technological developments and scientific discoveries have been substantial, we still lack a major understanding at all levels of the basic ecological questions in relation to the microorganisms in our seas and oceans. These fundamental questions are:
rdf:langString right
rdf:langString – European Science Foundation, 2012
rdf:langString Scientists' warning to humanity
rdf:langString How to Identify Microbes – Meet the Microcosmos
rdf:langString Microbes don't actually look like anything – Meet the Microcosmos
rdf:langString Differential interference contrast (DIC) – Meet the Microcosmos
xsd:integer 104 107 111 120 133 136 140 143 153 160 166 167 170 173 180 200 208 210 220 240 250 280 300 400 450 454
rdf:langString Marine microorganisms are defined by their habitat as microorganisms living in a marine environment, that is, in the saltwater of a sea or ocean or the brackish water of a coastal estuary. A microorganism (or microbe) is any microscopic living organism or virus, that is too small to see with the unaided human eye without magnification. Microorganisms are very diverse. They can be single-celled or multicellular and include bacteria, archaea, viruses and most protozoa, as well as some fungi, algae, and animals, such as rotifers and copepods. Many macroscopic animals and plants have microscopic juvenile stages. Some microbiologists also classify biologically active entities such as viruses and viroids as microorganisms, but others consider these as non-living. Marine microorganisms have been variously estimated to make up about 70%, or about 90%, of the biomass in the ocean. Taken together they form the marine microbiome. Over billions of years this microbiome has evolved many life styles and adaptations and come to participate in the global cycling of almost all chemical elements. Microorganisms are crucial to nutrient recycling in ecosystems as they act as decomposers. They are also responsible for nearly all photosynthesis that occurs in the ocean, as well as the cycling of carbon, nitrogen, phosphorus and other nutrients and trace elements. Marine microorganisms sequester large amounts of carbon and produce much of the world's oxygen. A small proportion of marine microorganisms are pathogenic, causing disease and even death in marine plants and animals. However marine microorganisms recycle the major chemical elements, both producing and consuming about half of all organic matter generated on the planet every year. As inhabitants of the largest environment on Earth, microbial marine systems drive changes in every global system. In July 2016, scientists reported identifying a set of 355 genes from the last universal common ancestor (LUCA) of all life on the planet, including the marine microorganisms. Despite its diversity, microscopic life in the oceans is still poorly understood. For example, the role of viruses in marine ecosystems has barely been explored even in the beginning of the 21st century.
rdf:langString 해양 미생물(marine microorganisms)은 해양환경에 의해서, 즉 바다의 짠물이나 해안 하구의 염분이 섞인 바다의 미생물로 정의된다. 미생물은 배율없이 육안으로 보기에는 너무 작은 미세한 살아있는 유기체 또는 바이러스이다. 미생물은 매우 다양하다. 미생물은 단세포이거나 다세포일 수 있으며 박테리아, 고세균, 바이러스 및 대부분의 원생생물뿐만 아니라 일부 진균류, 조류 및 회전체 및 코페포드와 같은 동물을 포함한다. 많은 거식적 동물과 식물은 어린 시절의 미세한 단계를 갖고 있다. 몇몇 미생물학자들은 바이러스와 바이로이드와 같은 생물학적 활성 개체를 미생물로 분류하지만, 다른 이들은 그것들이 살아있지 않다고 여긴다. 해양 미생물은 바다에서 약 70% 또는 약 90%의 바이오매스(생물량)을 이루는 것으로 다양하게 추정되었다. 함께 취합하면 해양 미생물이 형성된다. 수십억 년에 걸쳐서 이 미생물은 많은 생활 양식과 적응을 진화시켜왔으며 거의 모든 화학원소들의 세계주기에 참여하게 되었다. 미생물은 그들이 분해제로써 활동하기 때문에 생태계에서 영양 재활용에 중요하다. 그들이 또한 거의 바다에서 일어나는 모든 광합성뿐만 아니라 탄소, 질소, 인과 기타 영양소와 미량 원소의 주기를 담당한다. 해양 미생물은 많은 양의 탄소를 격리하고 세계의 산소의 대부분을 생산한다. 해양 미생물의 작은 부분은 질병과 심지어 해양 식물과 동물의 죽음을 야기시키는 병원성이지만, 해양 미생물은 매년 식물에 사용되는 모든 유기물의 절반을 생성하고 소비하면서 주요 화학원소를 재활용한다. 지구의 가장 큰 환경의 거주자로서, 해양의 미생물 시스템은 모든 세계적 시스템에서 변화를 주도한다. 2016년 7월, 과학자들은 지구에서 해양 미생물을 포함한 모든 생명체의 마지막 보편적 공통 조상으로부터 355개의 유전자 세트를 확인했다고 보고했다. 그럼에도 불구하고, 바다의 미생물은 알려지지 않은 것이 많다. 예를 들어, 해양 생태계에서의 바이러스의 역할은 21세기 초에도 거의 밝혀지지 않았다.
rdf:langString I microrganismi marini sono definiti dal loro habitat come microrganismi che vivono in un ambiente marino, cioè nell'acqua salata di un mare o oceano o nell'acqua salmastra di un estuario costiero. Un microrganismo (o microbo ) è qualsiasi organismo vivente microscopico o virus, che è troppo piccolo per essere visto a occhio nudo senza ingrandimento. I microrganismi sono molto diversi e possono essere unicellulari o multicellulari ed includere batteri, archaea, i virus e la maggior parte dei protozoi, nonché alcuni funghi, alghe e animali, come rotiferi e copepodi. Molti animali e piante macroscopici hanno stadi giovanili microscopici. Alcuni microbiologi classificano anche entità biologicamente attive come virus e viroidi come microrganismi, ma altri le considerano non viventi. I microrganismi marini sono stati variamente stimati per costituire circa il 70%, o anche il 90%, della biomassa nell'oceano . Presi insieme formano il microbioma marino . Nel corso di miliardi di anni questo microbioma ha evoluto molti stili di vita e adattamenti ed è arrivato a partecipare al ciclo globale di quasi tutti gli elementi chimici. I microrganismi sono fondamentali per il riciclaggio dei nutrienti negli ecosistemi poiché agiscono come . Sono anche responsabili di quasi tutta la fotosintesi che si verifica nell'oceano, nonché del ciclo di carbonio, azoto, fosforo e altri nutrienti e oligoelementi. Infatti, i microrganismi marini sequestrano grandi quantità di carbonio e producono gran parte dell'ossigeno mondiale. Una piccola percentuale di microrganismi marini è patogeno, causando malattie e persino la morte nelle piante e negli animali marini. Tuttavia, i microrganismi marini i principali elementi chimici, producendo e consumando circa la metà di tutta la materia organica generata sul pianeta ogni anno. In quanto abitanti del più vasto ambiente della Terra, i sistemi microbici marini guidano i cambiamenti in ogni sistema globale. Nel luglio 2016, scienziati hanno riferito di aver identificato una serie di 355 geni dell'ultimo antenato comune universale (LUCA) di tutta la vita sul pianeta, compresi i microrganismi marini. Nonostante la sua diversità, la vita microscopica negli oceani è ancora poco conosciuta. Un esempio è il ruolo dei virus negli ecosistemi marini, ruolo che è stato a malapena esplorato anche all'inizio del XXI secolo
rdf:langString #f4ffdd
xsd:nonNegativeInteger 240097

data from the linked data cloud