Mapping cone (topology)

http://dbpedia.org/resource/Mapping_cone_(topology)

In dem mathematischen Teilgebiet der Topologie ist der Abbildungskegel eine Konstruktion, die einer stetigen Funktion zwischen zwei topologischen Räumen einen dritten solchen Raum zuordnet.Sie ist nah verwandt mit dem Konzept des Kegels über einem topologischen Raum; ebenso wie dieser wird der Abbildungskegel hauptsächlich in der algebraischen Topologie betrachtet. Allgemeiner gibt es in der homologischen Algebra den Abbildungskegel von Kettenabbildungen zwischen Kettenkomplexen. rdf:langString
En mathématiques et plus précisément en théorie de l'homotopie, le cône d'une application est un espace topologique construit à partir du cône ayant pour base l'espace de départ de l'application, en identifiant les points de cette base avec ceux de l'espace d'arrivée au moyen de l'application. rdf:langString
In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces. rdf:langString
在数学,特别是同伦论中,映射锥(mapping cone)是一个拓扑构造 。它也称为同伦上纤维(homotopy cofiber),也记成 rdf:langString
У математиці , особливо теорії гомотопії , конус відображення є конструкцією визначеною для кожного неперервного відображення між топологічними просторами. Конус відображення можна розглядати як циліндр відображення , один кінець якого стискується до точки. Конуси відображення часто застосовуються у теорії гомотопії просторів із виділеною точкою. rdf:langString
rdf:langString Abbildungskegel
rdf:langString Cône d'une application
rdf:langString Mapping cone (topology)
rdf:langString 映射锥
rdf:langString Конус відображення
xsd:integer 1707756
xsd:integer 1087811104
rdf:langString In dem mathematischen Teilgebiet der Topologie ist der Abbildungskegel eine Konstruktion, die einer stetigen Funktion zwischen zwei topologischen Räumen einen dritten solchen Raum zuordnet.Sie ist nah verwandt mit dem Konzept des Kegels über einem topologischen Raum; ebenso wie dieser wird der Abbildungskegel hauptsächlich in der algebraischen Topologie betrachtet. Allgemeiner gibt es in der homologischen Algebra den Abbildungskegel von Kettenabbildungen zwischen Kettenkomplexen.
rdf:langString En mathématiques et plus précisément en théorie de l'homotopie, le cône d'une application est un espace topologique construit à partir du cône ayant pour base l'espace de départ de l'application, en identifiant les points de cette base avec ceux de l'espace d'arrivée au moyen de l'application.
rdf:langString In mathematics, especially homotopy theory, the mapping cone is a construction of topology, analogous to a quotient space. It is also called the homotopy cofiber, and also notated . Its dual, a fibration, is called the mapping fibre. The mapping cone can be understood to be a mapping cylinder , with one end of the cylinder collapsed to a point. Thus, mapping cones are frequently applied in the homotopy theory of pointed spaces.
rdf:langString 在数学,特别是同伦论中,映射锥(mapping cone)是一个拓扑构造 。它也称为同伦上纤维(homotopy cofiber),也记成
rdf:langString У математиці , особливо теорії гомотопії , конус відображення є конструкцією визначеною для кожного неперервного відображення між топологічними просторами. Конус відображення можна розглядати як циліндр відображення , один кінець якого стискується до точки. Конуси відображення часто застосовуються у теорії гомотопії просторів із виділеною точкою.
xsd:nonNegativeInteger 7826

data from the linked data cloud