Mahaney's theorem

http://dbpedia.org/resource/Mahaney's_theorem

Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set. rdf:langString
En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n. rdf:langString
rdf:langString Théorème de Mahaney
rdf:langString Mahaney's theorem
xsd:integer 47241003
xsd:integer 1118453335
rdf:langString Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set.
rdf:langString En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n.
xsd:nonNegativeInteger 1260

data from the linked data cloud