Mahaney's theorem
http://dbpedia.org/resource/Mahaney's_theorem
Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set.
rdf:langString
En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n.
rdf:langString
rdf:langString
Théorème de Mahaney
rdf:langString
Mahaney's theorem
xsd:integer
47241003
xsd:integer
1118453335
rdf:langString
Mahaney's theorem is a theorem in computational complexity theory proven by Stephen Mahaney that states that if any sparse language is NP-complete, then P = NP. Also, if any sparse language is NP-complete with respect to Turing reductions, then the polynomial-time hierarchy collapses to . Mahaney's argument does not actually require the sparse language to be in NP, so there is a sparse NP-hard set if and only if P = NP. This is because the existence of an NP-hard sparse set implies the existence of an NP-complete sparse set.
rdf:langString
En informatique théorique, et plus précisément en théorie de la complexité, le théorème de Mahaney dit que s'il existe un langage creux NP-complet, alors P = NP. Un langage creux est un langage où le nombre de mots de longueur n du langage est polynomial en n.
xsd:nonNegativeInteger
1260