Linear time-invariant system
http://dbpedia.org/resource/Linear_time-invariant_system an entity of type: Thing
En procesamiento de señales, un sistema LTI (Linear Time-Invariant) o sistema lineal e invariante en el tiempo, es aquel que, como su propio nombre indica, cumple las propiedades de linealidad e invarianza en el tiempo.
rdf:langString
선형 시불변 시스템(LTI Linear Time Invariable System)이란 선형성(Linearity)과 시불변성(Time invariant)을 모두 가진 시스템이다. 선형 시스템은 입력과 출력이 선형성을 만족시키는 시스템을 말한다. 시불변 시스템은 입력에서 시간의 지연 또는 선행이 있을 때, 출력에도 같은 시간지연이 있는 시스템을 의미한다.
rdf:langString
In teoria dei sistemi, un sistema dinamico lineare stazionario, anche detto sistema lineare tempo-invariante o sistema LTI, è un sistema dinamico lineare tempo-invariante, soggetto cioè al principio di sovrapposizione degli effetti e tale che il suo comportamento sia costante nel tempo. Si tratta di un modello matematico che riveste particolare importanza in numerose applicazioni, in particolare in elettronica e nella teoria del controllo.
rdf:langString
LTIシステム理論(英語: LTI system theory)は、電気工学、特に電気回路、信号処理、制御理論といった分野で、線型時不変系(linear time-invariant system)に任意の入力信号を与えたときの応答を求める理論である。通常、独立変数は時間だが、空間(画像処理や場の古典論など)やその他の座標にも容易に適用可能である。そのため、線型並進不変(linear translation-invariant)という用語も使われる。離散時間(標本化)系では対応する概念として線型シフト不変(linear shift-invariant)がある。
rdf:langString
Sistemas lineares e invariantes no tempo são de importância central no estudo da engenharia elétrica, principalmente nas áreas de processamento de sinais e sistemas de controle.
rdf:langString
System LTI, czyli system liniowy niezmienniczy w czasie – system, który jest liniowy ze względu na wszystkie swoje argumenty (czyli elementy) w dowolnej chwili czasu.
rdf:langString
Теория линейных стационарных систем — раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Используется для изучения процессов управления техническими системами, для цифровой обработки сигналов и в других областях науки и техники.
rdf:langString
Тео́рія ліні́йних стаціона́рних систе́м — розділ теорії динамічних систем, що вивчає поведінку і динамічні властивості лінійних стаціонарних систем (ЛСС). Використовується для вивчення процесів керування технічними системами, для цифрової обробки сигналів і в інших галузях науки і техніки.
rdf:langString
线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。
rdf:langString
الخطية والاستقلال الزمني لنظام ما (بالإنجليزية: linear time-invariant system) هما من المزايا التي يتم بها وصف الأنظمة، فالمنظومة تتصف بأنها نظام خطي مستقل زمنيا إذا كان أداءها يتميّز بالخطية و إن كانت تحافظ في أدائها على نفس المخرج كاستجابة على نفس الإثارة، وذلك بغض النّظر عن الإزاحة الزمنية. هذا الاستقلال عن الإزاحة الزمنية يجعل من النظام منظومة رصينة.
rdf:langString
Un sistema LTI (Linear Time-Invariant) és un sistema lineal i , per tant compleix les propietats de linealitat i invariància en el temps.Generalment conegut com a sistema teòric LTI, prové de les matemàtiques aplicades i s'utilitza en espectroscòpia de ressonància magnètica nuclear, sismologia, circuits electrònics, processament de senyals i regulació automàtica entre d'altres. Si yi(t) i xi(t) són variables de sortida i entrada respectivament, i ai són constants complexes: a1x1(t) + a2x2(t) + ... + anxn(t) → a1y1(t) + a2y2(t) + ... + anyn(t) ⇒ sistema lineal Sistemes LTI en sèrie o Paral·lel
rdf:langString
Als ein lineares zeitinvariantes System, auch als LZI-System und LTI-System (englisch linear time-invariant system) wird ein System bezeichnet, wenn sein Verhalten sowohl die Eigenschaft der Linearität aufweist als auch unabhängig von zeitlichen Verschiebungen ist. Diese Unabhängigkeit von zeitlichen Verschiebungen wird als Zeitinvarianz bezeichnet.
rdf:langString
In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined . These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = x(t) ∗ h(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication, as is frequently employed by the symbol in computer languages). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally mo
rdf:langString
Een lineair tijdinvariant systeem verwerkt een of meer ingangssignalen (excitaties genoemd) tot een of meer uitgangssignalen (responsen of responsies genoemd), en dit op een lineaire manier. Dit wil zeggen dat een lineaire combinatie van excitaties wordt omgezet in dezelfde lineaire combinatie van de afzonderlijke responsen. Tijdinvariantie betekent dat, indien de excitaties in de tijd worden verschoven, de responsen ongewijzigd blijven, behalve dat ze over een gelijk tijdsinterval worden verschoven als de excitaties.
rdf:langString
rdf:langString
نظام خطي مستقل زمنيا
rdf:langString
Sistema LTI
rdf:langString
Lineares zeitinvariantes System
rdf:langString
Sistema LTI
rdf:langString
Sistema dinamico lineare stazionario
rdf:langString
Linear time-invariant system
rdf:langString
LTIシステム理論
rdf:langString
선형 시불변 시스템
rdf:langString
Lineair tijdinvariant systeem
rdf:langString
System LTI
rdf:langString
Sistema linear invariante no tempo
rdf:langString
Теория линейных стационарных систем
rdf:langString
线性时不变系统理论
rdf:langString
Теорія лінійних стаціонарних систем
xsd:integer
1383899
xsd:integer
1119193770
rdf:langString
Un sistema LTI (Linear Time-Invariant) és un sistema lineal i , per tant compleix les propietats de linealitat i invariància en el temps.Generalment conegut com a sistema teòric LTI, prové de les matemàtiques aplicades i s'utilitza en espectroscòpia de ressonància magnètica nuclear, sismologia, circuits electrònics, processament de senyals i regulació automàtica entre d'altres. Un Sistema Lineal ens diu que quan l'entrada d'un sistema donat és escalat per un valor, la sortida del mateix sistema també és escalada per la mateixa quantitat. Una característica important d'un sistema lineal és que obeeix el principi de superposició, que ens diu que si dues entrades són sumades juntes i passades pel sistema lineal, la sortida serà equivalent a la suma de les dos entrades avaluades per separat. Per tant, en un sistema lineal, si l'entrada és nul·la, la sortida també ha de ser-ho. Parlant d'una manera més simple, la sortida del sistema ha de respondre linealment, sense verificar l'última condició. Si yi(t) i xi(t) són variables de sortida i entrada respectivament, i ai són constants complexes: a1x1(t) + a2x2(t) + ... + anxn(t) → a1y1(t) + a2y2(t) + ... + anyn(t) ⇒ sistema lineal Un sistema és invariant en el temps si el seu comportament i les seves característiques són fixes. ⇔ Un sistema és invariant en el temps si un desplaçament temporal en l'entrada x(t-t0) ocasiona un desplaçament temporal en la sortida i(t-t0). si x(t) → y(t), llavors x(t - t0) → y(t - t0)⇒ sistema invariant Que un sistema sigui lineal (L) significa que quan l'entrada d'un sistema és escalada per un valor, la sortida del sistema també és escalada per la mateixa quantitat. D'altra banda, un sistema lineal també obeeix el principi de superposició. Això significa que si dues entrades són sumades juntes i passades a través del sistema lineal, la sortida serà equivalent a la suma de les dues entrades avaluades individualment. Principi de superposició amb Sistemes LTI Una característica molt important i útil d'aquest tipus de sistemes és que es pot calcular la sortida del mateix sistema, davant de qualsevol senyal, mitjançant la convolució, és a dir, descomponent l'entrada en un tren d'impulsos que seran multiplicats per la resposta a l'impuls del sistema i després sumats. És a dir, el principi de superposició en els sistemes LTI permet descompondre un problema lineal en dos o més subproblemes més senzills, de tal manera que problema original s'obté com a "superposició" o suma dels subproblemes més senzills. Sistemes LTI en sèrie o Paral·lel
* Sèrie: els sistemes en sèrie o cascada estan formats per dos o més sistemes col·locats en sèrie l'un amb l'altre. L'ordre d'aquests sistemes no modifica el resultat final. La convolució d'aquests sistemes genera el seu sistema equivalent.
* Paral·lel: els sistemes en paral·lel estan formats per dos o més sistemes col·locats en paral·lel amb un altre. El sistema equivalent és la suma d'aquests sistemes individuals. Sistemes causals Un sistema és causal si no depèn de valors futurs de les entrades per a determinar la sortida. Cosa que significa que si la primera entrada és rebuda en temps t=0 el sistema no ha de donar cap sortida fins aquest temps. Un exemple d'un sistema no-causal pot ser aquell que al "detectar" que ve una entrada dona la sortida abans que l'entrada arribi. Una condició necessària i suficient per a la causalitat és on h (t) és la resposta a l'impuls. No és possible, en general, determinar la causalitat de la transformada de Laplace, pel fet que la transformada inversa no és única. Quan una regió de convergència és especificada, llavors es pot determinar la causalitat.
rdf:langString
الخطية والاستقلال الزمني لنظام ما (بالإنجليزية: linear time-invariant system) هما من المزايا التي يتم بها وصف الأنظمة، فالمنظومة تتصف بأنها نظام خطي مستقل زمنيا إذا كان أداءها يتميّز بالخطية و إن كانت تحافظ في أدائها على نفس المخرج كاستجابة على نفس الإثارة، وذلك بغض النّظر عن الإزاحة الزمنية. هذا الاستقلال عن الإزاحة الزمنية يجعل من النظام منظومة رصينة. يتعين معنى هذا النوع من الأنظمة في أن معادلاتها قابلة للتحويل بسهولة، مما يجعل تحليل النظام ممكناُ بسلاسة. تتمتع العديد من الأنظمة التقنية كأنظمة التحكم والرسائل و المعلومات بهذه الميزة ولو بتقريب جيّد. كمثال على المنظومة الخطية نظام الارسال. تسمح العديد من الأنظمة الخطية بوصفها من خلال معادلات تفاضيلة ذات معاملات ثابتة. فهو نظرية في مجال الهندسة الكهربية، وخاصة في دوائر معالجة الإشارة ونظرية التحكم، التي تتحرى إجابة النظام الخطى المستقل زمنيا على إشارة المساهمةِ الاعتباطيةِ. و إن الزمن هو المتغير القياسي المستقل، ومن الممكن بسهولة ان يكون هو الفضاء أو بعض الاحداثيات الأخرى.
rdf:langString
Als ein lineares zeitinvariantes System, auch als LZI-System und LTI-System (englisch linear time-invariant system) wird ein System bezeichnet, wenn sein Verhalten sowohl die Eigenschaft der Linearität aufweist als auch unabhängig von zeitlichen Verschiebungen ist. Diese Unabhängigkeit von zeitlichen Verschiebungen wird als Zeitinvarianz bezeichnet. Die Bedeutung dieser Systeme liegt darin, dass sie besonders einfache Transformationsgleichungen aufweisen und der Systemanalyse damit leicht zugänglich sind. Viele technische Systeme wie in der Nachrichten- oder Regelungstechnik weisen, zumindest in guter Näherung, diese Eigenschaften auf. Ein System kann in diesem Zusammenhang beispielsweise ein Übertragungssystem sein. Einige LZI-Systeme lassen sich durch lineare gewöhnliche Differentialgleichungen (oder Differenzengleichungen) mit konstanten Koeffizienten beschreiben.
rdf:langString
En procesamiento de señales, un sistema LTI (Linear Time-Invariant) o sistema lineal e invariante en el tiempo, es aquel que, como su propio nombre indica, cumple las propiedades de linealidad e invarianza en el tiempo.
rdf:langString
In system analysis, among other fields of study, a linear time-invariant (LTI) system is a system that produces an output signal from any input signal subject to the constraints of linearity and time-invariance; these terms are briefly defined . These properties apply (exactly or approximately) to many important physical systems, in which case the response y(t) of the system to an arbitrary input x(t) can be found directly using convolution: y(t) = x(t) ∗ h(t) where h(t) is called the system's impulse response and ∗ represents convolution (not to be confused with multiplication, as is frequently employed by the symbol in computer languages). What's more, there are systematic methods for solving any such system (determining h(t)), whereas systems not meeting both properties are generally more difficult (or impossible) to solve analytically. A good example of an LTI system is any electrical circuit consisting of resistors, capacitors, inductors and linear amplifiers. Linear time-invariant system theory is also used in image processing, where the systems have spatial dimensions instead of, or in addition to, a temporal dimension. These systems may be referred to as linear translation-invariant to give the terminology the most general reach. In the case of generic discrete-time (i.e., sampled) systems, linear shift-invariant is the corresponding term. LTI system theory is an area of applied mathematics which has direct applications in electrical circuit analysis and design, signal processing and filter design, control theory, mechanical engineering, image processing, the design of measuring instruments of many sorts, NMR spectroscopy, and many other technical areas where systems of ordinary differential equations present themselves.
rdf:langString
Een lineair tijdinvariant systeem verwerkt een of meer ingangssignalen (excitaties genoemd) tot een of meer uitgangssignalen (responsen of responsies genoemd), en dit op een lineaire manier. Dit wil zeggen dat een lineaire combinatie van excitaties wordt omgezet in dezelfde lineaire combinatie van de afzonderlijke responsen. Tijdinvariantie betekent dat, indien de excitaties in de tijd worden verschoven, de responsen ongewijzigd blijven, behalve dat ze over een gelijk tijdsinterval worden verschoven als de excitaties. Onderscheiden worden een lineair tijdinvariant continu systeem (LTC-systeem) en een lineair tijdinvariant discreet systeem (LTD-systeem).
rdf:langString
선형 시불변 시스템(LTI Linear Time Invariable System)이란 선형성(Linearity)과 시불변성(Time invariant)을 모두 가진 시스템이다. 선형 시스템은 입력과 출력이 선형성을 만족시키는 시스템을 말한다. 시불변 시스템은 입력에서 시간의 지연 또는 선행이 있을 때, 출력에도 같은 시간지연이 있는 시스템을 의미한다.
rdf:langString
In teoria dei sistemi, un sistema dinamico lineare stazionario, anche detto sistema lineare tempo-invariante o sistema LTI, è un sistema dinamico lineare tempo-invariante, soggetto cioè al principio di sovrapposizione degli effetti e tale che il suo comportamento sia costante nel tempo. Si tratta di un modello matematico che riveste particolare importanza in numerose applicazioni, in particolare in elettronica e nella teoria del controllo.
rdf:langString
LTIシステム理論(英語: LTI system theory)は、電気工学、特に電気回路、信号処理、制御理論といった分野で、線型時不変系(linear time-invariant system)に任意の入力信号を与えたときの応答を求める理論である。通常、独立変数は時間だが、空間(画像処理や場の古典論など)やその他の座標にも容易に適用可能である。そのため、線型並進不変(linear translation-invariant)という用語も使われる。離散時間(標本化)系では対応する概念として線型シフト不変(linear shift-invariant)がある。
rdf:langString
Sistemas lineares e invariantes no tempo são de importância central no estudo da engenharia elétrica, principalmente nas áreas de processamento de sinais e sistemas de controle.
rdf:langString
System LTI, czyli system liniowy niezmienniczy w czasie – system, który jest liniowy ze względu na wszystkie swoje argumenty (czyli elementy) w dowolnej chwili czasu.
rdf:langString
Теория линейных стационарных систем — раздел теории динамических систем, изучающий поведение и динамические свойства линейных стационарных систем (ЛСС). Используется для изучения процессов управления техническими системами, для цифровой обработки сигналов и в других областях науки и техники.
rdf:langString
Тео́рія ліні́йних стаціона́рних систе́м — розділ теорії динамічних систем, що вивчає поведінку і динамічні властивості лінійних стаціонарних систем (ЛСС). Використовується для вивчення процесів керування технічними системами, для цифрової обробки сигналів і в інших галузях науки і техніки.
rdf:langString
线性非时变系统理论俗称LTI系统理论,源自应用数学,直接在核磁共振頻譜學、地震学、电路、信号处理和控制理论等技术领域运用。它研究的是线性、非时变系统对任意输入信号的响应。虽然这些系统的轨迹通常会随时间变化(例如声学波形)来测量和跟踪,但是应用到图像处理和场论时,LTI系统在空间维度上也有轨迹。因此,这些系统也被称为线性非時變平移,在最一般的范围理论给出此理论。在离散(即采样)系统中对应的术语是线性非時變平移系统。由电阻、电容、电感组成的电路是LTI系统的一个很好的例子。
xsd:nonNegativeInteger
36870