Line bundle

http://dbpedia.org/resource/Line_bundle an entity of type: Thing

数学における直線束(ちょくせんそく、英: line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 1 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。1×1 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、1×1 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。 rdf:langString
In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1. Complex line bundles are closely related to circle bundles. There are some celebrated ones, for example the Hopf fibrations of spheres to spheres. Every line bundle arises from a divisor with the following conditions rdf:langString
En mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1. Le langage des fibrés en droites est utilisé en topologie et en géométrie algébrique, mais il apparaît aussi en géométrie différentielle et donc dans les domaines de la physique qui utilisent ces outils, en particulier les théories de jauges. rdf:langString
Em matemática, um fibrado de linhas expressa o conceito de uma linha que varia de ponto a ponto do espaço. Por exemplo uma curva no plano tendo uma linha tangente em cada ponto determina uma linha variante: o fibrado tangente é um modo de organizar estas. Mais formalmente, em topologia algébrica e topologia diferencial um fibrado de linhas é definido como um fibrado vectorial de ordem 1. No caso do fibrado de linhas complexo, nós estamos procurando, de fato, também por fibrados circulares. Existem alguns celebrados, por exemplo as fibrações de Hopf de esferas para esferas. rdf:langString
rdf:langString Geradenbündel (Faserbündel)
rdf:langString Fibré en droites
rdf:langString Line bundle
rdf:langString 선다발
rdf:langString 直線束
rdf:langString Fibrado de linhas
xsd:integer 361366
xsd:integer 1076237183
rdf:langString In mathematics, a line bundle expresses the concept of a line that varies from point to point of a space. For example, a curve in the plane having a tangent line at each point determines a varying line: the tangent bundle is a way of organising these. More formally, in algebraic topology and differential topology, a line bundle is defined as a vector bundle of rank 1. Line bundles are specified by choosing a one-dimensional vector space for each point of the space in a continuous manner. In topological applications, this vector space is usually real or complex. The two cases display fundamentally different behavior because of the different topological properties of real and complex vector spaces: If the origin is removed from the real line, then the result is the set of 1×1 invertible real matrices, which is homotopy-equivalent to a discrete two-point space by contracting the positive and negative reals each to a point; whereas removing the origin from the complex plane yields the 1×1 invertible complex matrices, which have the homotopy type of a circle. From the perspective of homotopy theory, a real line bundle therefore behaves much the same as a fiber bundle with a two-point fiber, that is, like a double cover. A special case of this is the orientable double cover of a differentiable manifold, where the corresponding line bundle is the determinant bundle of the tangent bundle (see below). The Möbius strip corresponds to a double cover of the circle (the θ → 2θ mapping) and by changing the fiber, can also be viewed as having a two-point fiber, the unit interval as a fiber, or the real line. Complex line bundles are closely related to circle bundles. There are some celebrated ones, for example the Hopf fibrations of spheres to spheres. In algebraic geometry, an invertible sheaf (i.e., locally free sheaf of rank one) is often called a line bundle. Every line bundle arises from a divisor with the following conditions (I) If X is reduced and irreducible scheme, then every line bundle comes from a divisor. (II) If X is projective scheme then the same statement holds.
rdf:langString En mathématiques, un fibré en droites est une construction qui décrit une droite attachée en chaque point d'un espace. Par exemple, une courbe dans le plan possède une tangente en chaque point, et si la courbe est suffisamment lisse alors la tangente évolue de manière « continue » lorsqu'on se déplace sur la courbe. De manière plus formelle on peut définir un fibré en droites comme un fibré vectoriel de rang 1. Le langage des fibrés en droites est utilisé en topologie et en géométrie algébrique, mais il apparaît aussi en géométrie différentielle et donc dans les domaines de la physique qui utilisent ces outils, en particulier les théories de jauges. L'intérêt de se focaliser sur les fibrés en droites c'est que dans bien des cas les invariants ou les propriétés de constructions plus élaborées (par exemple, des fibrés vectoriels) se calculent ou s'obtiennent à partir des invariants ou propriétés correspondants sur les fibrés en droites : c'est le principe de décomposition (voir plus bas), qui prend la forme particulière du pour les fibrés holomorphes sur le plan projectif complexe. Les fibrés en droites constituent donc les briques de bases de la théorie des fibrés vectoriels.
rdf:langString 数学における直線束(ちょくせんそく、英: line bundle; 線束)は、空間の点から点へ動いていく直線の概念を表すものである。例えば、平面上の曲線は各点において接線を持つが、これらを構造化する方法によって接束が得られる。より厳密に、代数幾何学および微分位相幾何学における直線束は階数 1 のベクトル束として定義される。 一次元の実直線束(冒頭に述べたようなもの)と一次元の複素直線束は異なる。1×1 正則実行列全体の成す空間の位相は、(正および負の実数をそれぞれ一点に縮めた)にホモトピー同値だが、1×1 正則複素行列の空間のホモトピー型は円周である。 従って、実直線束はホモトピー論的には、二点繊維を持つファイバー束としての二重被覆も同然である。これは可微分多様体上のになる(実際これは、直線束が行列式束(接束の最高次外冪)の特別の場合であることからわかる)。メビウスの帯は円周の二重被覆(偏角を θ ↦ 2θ にする写像)に対応し、これを二点繊維を持つものとして見ることもできるが、このとき単位区間でも実数直線でもデータとしては同値である。 複素直線束の場合には、実はこれはでもあることが分かる。よく知られたものとして、例えば球面から球面へのがある。
rdf:langString Em matemática, um fibrado de linhas expressa o conceito de uma linha que varia de ponto a ponto do espaço. Por exemplo uma curva no plano tendo uma linha tangente em cada ponto determina uma linha variante: o fibrado tangente é um modo de organizar estas. Mais formalmente, em topologia algébrica e topologia diferencial um fibrado de linhas é definido como um fibrado vectorial de ordem 1. Existe uma diferença evidente entre fibrados de linhas reais monodimensionais (como já descrito) e fibrados de linhas complexos monodimensionais. De fato a topologia das matrizes reais 1×1 invertíveis e matrizes complexas é inteiramente diferente: a primeira delas é uma homotopia espacial equivalente a um espaço discreto de dois pontos (reais positivos e negativos contraidos), enquanto o segundo tem o tipo homotópico de um círculo. Um fibrado de linhas real está entretanto no cerne da teoria de homotopia assim como um fibrado com um fibrado de dois pontos - uma cobertura dupla. Isto relembra a cobertura dupla orientada sobre uma variedade diferenciável: na verdade esse é um caso especial no qual o fibrado de linhas é o fibrado determinante (produto exterior superior) do fibrado tangente. A fita de Möbius corresponde à dupla cobertura do círculo (o mapeamento θ → 2θ) e pode ser visto como se nós tivéssemos um fibrado de dois pontos, o intervalo unitário ou a linha real: os dados são equivalentes. No caso do fibrado de linhas complexo, nós estamos procurando, de fato, também por fibrados circulares. Existem alguns celebrados, por exemplo as fibrações de Hopf de esferas para esferas.
xsd:nonNegativeInteger 11572

data from the linked data cloud