Lie product formula
http://dbpedia.org/resource/Lie_product_formula an entity of type: WikicatLieGroups
Die Lie-Produktformel oder liesche Produktformel, benannt nach Sophus Lie, ist eine Formel zur Berechnung des Wertes der Exponentialfunktion von einer Summe zweier quadratischer Matrizen. Wegen späterer Verallgemeinerungen durch Hale Trotter spricht man auch von der Trotter-Produktformel oder Lie-Trotter-Produktformel.
rdf:langString
Soient A et B deux opérateurs, qui ne commutent en général pas. La formule de Trotter-Kato, encore appelée simplement formule de Trotter ou de façon plus complète formule de Lie-Trotter-Kato, donne une expression de l'exponentielle de leur somme :
rdf:langString
数学において、ソフス・リー (Sophus Lie, 1875) にちなんで名づけられたリーの積公式 (英: Lie product formula) は、任意の実あるいは複素正方行列 A, B に対して、 が成り立つという定理である。ここで eA は A の行列指数関数を表す。リー・トロッターの積公式 (Lie–Trotter product formula) およびトロッター・加藤の定理 (Trotter–Kato theorem) はこれをある種の非有界線型作用素 A, B に拡張する。
rdf:langString
In mathematics, the Lie product formula, named for Sophus Lie (1875), but also widely called the Trotter product formula, named after Hale Trotter, states that for arbitrary m × m real or complex matrices A and B, where eA denotes the matrix exponential of A. The Lie–Trotter product formula and the Trotter–Kato theorem extend this to certain unbounded linear operators A and B. This formula is an analogue of the classical exponential law The Trotter–Kato theorem can be used for approximation of linear C0-semigroups.
rdf:langString
rdf:langString
Lie-Produktformel
rdf:langString
Formule de Trotter-Kato
rdf:langString
Lie product formula
rdf:langString
リー・トロッター積公式
xsd:integer
19680272
xsd:integer
1086967652
rdf:langString
T/t094340
rdf:langString
Trotter product formula
rdf:langString
Die Lie-Produktformel oder liesche Produktformel, benannt nach Sophus Lie, ist eine Formel zur Berechnung des Wertes der Exponentialfunktion von einer Summe zweier quadratischer Matrizen. Wegen späterer Verallgemeinerungen durch Hale Trotter spricht man auch von der Trotter-Produktformel oder Lie-Trotter-Produktformel.
rdf:langString
In mathematics, the Lie product formula, named for Sophus Lie (1875), but also widely called the Trotter product formula, named after Hale Trotter, states that for arbitrary m × m real or complex matrices A and B, where eA denotes the matrix exponential of A. The Lie–Trotter product formula and the Trotter–Kato theorem extend this to certain unbounded linear operators A and B. This formula is an analogue of the classical exponential law which holds for all real or complex numbers x and y. If x and y are replaced with matrices A and B, and the exponential replaced with a matrix exponential, it is usually necessary for A and B to commute for the law to still hold. However, the Lie product formula holds for all matrices A and B, even ones which do not commute. The Lie product formula is conceptually related to the Baker–Campbell–Hausdorff formula, in that both are replacements, in the context of noncommuting operators, for the classical exponential law. The formula has applications, for example, in the path integral formulation of quantum mechanics. It allows one to separate the Schrödinger evolution operator (propagator) into alternating increments of kinetic and potential operators (the Suzuki–Trotter decomposition, after Trotter and ). The same idea is used in the construction of splitting methods for the numerical solution of differential equations. Moreover, the Lie product theorem is sufficient to prove the Feynman–Kac formula. The Trotter–Kato theorem can be used for approximation of linear C0-semigroups.
rdf:langString
Soient A et B deux opérateurs, qui ne commutent en général pas. La formule de Trotter-Kato, encore appelée simplement formule de Trotter ou de façon plus complète formule de Lie-Trotter-Kato, donne une expression de l'exponentielle de leur somme :
rdf:langString
数学において、ソフス・リー (Sophus Lie, 1875) にちなんで名づけられたリーの積公式 (英: Lie product formula) は、任意の実あるいは複素正方行列 A, B に対して、 が成り立つという定理である。ここで eA は A の行列指数関数を表す。リー・トロッターの積公式 (Lie–Trotter product formula) およびトロッター・加藤の定理 (Trotter–Kato theorem) はこれをある種の非有界線型作用素 A, B に拡張する。
xsd:nonNegativeInteger
5489