Lie group decomposition
http://dbpedia.org/resource/Lie_group_decomposition an entity of type: WikicatLieGroups
数学において、線型代数群(線型リー群や各種行列群)の各種分解(ぶんかい、英: decompositions)は、行列群やそれに付随する各種の対象に関する構造(それがどのように部分群から構成されるのか)を調べるのに用いられる。 これらの分解は、リー群やリー環の表現論における本質的・技術的な道具であるとともに、それらの群や付随する等質空間の代数トポロジーの研究などにも用いられる。リー群の方法論を用いることが20世紀数学の標準的な手法の一つとなったことにより、現在では多くの現象をこれらの分解に帰着して論じることができる。このような方法論は、リー群、リー環から代数群特に p-進群といった行列群に等しく適用することができるが、これらを統一的な理論として集約することは容易でない。
rdf:langString
In mathematics, Lie group decompositions are used to analyse the structure of Lie groups and associated objects, by showing how they are built up out of subgroups. They are essential technical tools in the representation theory of Lie groups and Lie algebras; they can also be used to study the algebraic topology of such groups and associated homogeneous spaces. Since the use of Lie group methods became one of the standard techniques in twentieth century mathematics, many phenomena can now be referred back to decompositions.
rdf:langString
rdf:langString
Lie group decomposition
rdf:langString
リー群の分解
xsd:integer
373278
xsd:integer
1088732053
rdf:langString
In mathematics, Lie group decompositions are used to analyse the structure of Lie groups and associated objects, by showing how they are built up out of subgroups. They are essential technical tools in the representation theory of Lie groups and Lie algebras; they can also be used to study the algebraic topology of such groups and associated homogeneous spaces. Since the use of Lie group methods became one of the standard techniques in twentieth century mathematics, many phenomena can now be referred back to decompositions. The same ideas are often applied to Lie groups, Lie algebras, algebraic groups and p-adic number analogues, making it harder to summarise the facts into a unified theory.
rdf:langString
数学において、線型代数群(線型リー群や各種行列群)の各種分解(ぶんかい、英: decompositions)は、行列群やそれに付随する各種の対象に関する構造(それがどのように部分群から構成されるのか)を調べるのに用いられる。 これらの分解は、リー群やリー環の表現論における本質的・技術的な道具であるとともに、それらの群や付随する等質空間の代数トポロジーの研究などにも用いられる。リー群の方法論を用いることが20世紀数学の標準的な手法の一つとなったことにより、現在では多くの現象をこれらの分解に帰着して論じることができる。このような方法論は、リー群、リー環から代数群特に p-進群といった行列群に等しく適用することができるが、これらを統一的な理論として集約することは容易でない。
xsd:nonNegativeInteger
2563