Lattice gauge theory
http://dbpedia.org/resource/Lattice_gauge_theory an entity of type: WikicatLatticeModels
تُعرف نظرية المقياس الشبكي في الفيزياء بأنها علم دراسة نظريات المقياس في زمكان مُقطع على هيئة شبكة. تحظى نظريات المقياس بأهمية كبرى في فيزياء الجسيمات، وهي تشمل نظريات الجسيمات الأولية السائدة: الكهروديناميكا الكمية، والكروموديناميكا الكمية، ونموذج فيزياء الجسيمات المعياري. تشتمل حسابات نظرية المقياس غير الاضطرابية في الزمكان المتصل على تكاملات مسار لانهائية الأبعاد يستحيل علينا حسابها. ولكن إذا طبقنا نفس المبدأ على زمكان متقطع فسوف تؤول تكاملات المسار إلى تكاملات ذات أبعاد محدودة يمكن حسابها بواسطة أساليب المحاكاة التصادفية مثل طريقة مونت كارلو. وإذا افترضنا أن حجم الشبكة لا متناهي، وأن المسافة بين نقاطه متناهية الصغر فسوف تؤول النظرية من جديد إلى نظرية المقياس المتصلة.
rdf:langString
格子ゲージ理論(こうしゲージりろん、lattice gauge theory)は、格子上に離散化された時空におけるゲージ理論である。 低エネルギー領域での量子色力学はその強結合性のために摂動論的取り扱いができないが、この困難を打開するために生まれたのが格子ゲージ理論である。1974年、クォークの閉じ込めを記述するためにケネス・ウィルソンによって初めて提唱された。1980年にはがモンテカルロ法を用いて格子ゲージ理論による数値計算に成功し、以後、”強い相互作用の第一原理計算”として有効活用されている。 格子上で場の理論を扱う場合は格子場の理論、格子上の場の理論、格子上で量子色力学を扱う場合は格子QCD、格子量子色力学などと呼ばれる。
rdf:langString
Eine Gittereichtheorie ist eine Eichtheorie, die auf einer diskreten Raumzeit definiert wird. Gittereichtheorien gehören zu den wenigen Möglichkeiten, nicht-störungstheoretische Berechnungen in Quantenfeldtheorien anzustellen. Neben der QCD werden auch andere Eichtheorien und Spinsysteme auf dem Gitter untersucht, insbesondere solche mit nichtabelscher Eichgruppe (allgemeine Yang-Mills-Theorien analog zur QCD).
rdf:langString
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory
rdf:langString
La théorie de jauge sur réseau est une branche de la physique théorique, consistant à étudier les propriétés d'une théorie de jauge sur un modèle discret d’espace-temps, caractérisé mathématiquement comme un réseau. Les théories de jauge jouent un rôle fondamental en physique des particules, puisqu'elles unifient les théories actuellement reçues sur les particules élémentaires : l’électrodynamique quantique, la chromodynamique quantique (QCD) et le « Modèle standard ». Mais les calculs non-perturbés de la théorie de jauge pour le continuum espace-temps reposent formellement sur le calcul d’intégrales de chemin en dimension infinie pratiquement impossibles à évaluer. En discrétisant l'espace-temps, l’intégrale de chemin est en dimension finie, et elle peut être estimée par des techniques de
rdf:langString
In fisica, una teoria di gauge su reticolo è una teoria di gauge in cui l'usuale spaziotempo continuo viene discretizzato con un reticolo tipicamente ipercubico di punti. Le divergenze ultraviolette della teoria di campo sono in questo modo regolarizzate.
rdf:langString
Em física, teoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede. Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado. Teoria do retículo gauge tem-se mostrado exatamente duplas de espuma de spin desde que somente laços de Wilson apareçam na ação sobre plaquetas.
rdf:langString
rdf:langString
نظرية المقياس الشبكي
rdf:langString
Gittereichtheorie
rdf:langString
Théorie de jauge sur réseau
rdf:langString
Teoria di gauge su reticolo
rdf:langString
Lattice gauge theory
rdf:langString
格子ゲージ理論
rdf:langString
Teorias de gauge na rede
xsd:integer
671804
xsd:integer
1119093623
rdf:langString
تُعرف نظرية المقياس الشبكي في الفيزياء بأنها علم دراسة نظريات المقياس في زمكان مُقطع على هيئة شبكة. تحظى نظريات المقياس بأهمية كبرى في فيزياء الجسيمات، وهي تشمل نظريات الجسيمات الأولية السائدة: الكهروديناميكا الكمية، والكروموديناميكا الكمية، ونموذج فيزياء الجسيمات المعياري. تشتمل حسابات نظرية المقياس غير الاضطرابية في الزمكان المتصل على تكاملات مسار لانهائية الأبعاد يستحيل علينا حسابها. ولكن إذا طبقنا نفس المبدأ على زمكان متقطع فسوف تؤول تكاملات المسار إلى تكاملات ذات أبعاد محدودة يمكن حسابها بواسطة أساليب المحاكاة التصادفية مثل طريقة مونت كارلو. وإذا افترضنا أن حجم الشبكة لا متناهي، وأن المسافة بين نقاطه متناهية الصغر فسوف تؤول النظرية من جديد إلى نظرية المقياس المتصلة.
rdf:langString
Eine Gittereichtheorie ist eine Eichtheorie, die auf einer diskreten Raumzeit definiert wird. Gittereichtheorien gehören zu den wenigen Möglichkeiten, nicht-störungstheoretische Berechnungen in Quantenfeldtheorien anzustellen. Besondere Bedeutung erlangte die Methode im Rahmen der Quantenchromodynamik (QCD). Weil die Gitterregularisierung eine nicht-störungstheoretische Regularisierung ist, kann man in Gittereichtheorien auch Berechnungen für niedrige Energien durchführen, die für die Störungstheorie nicht zugänglich sind. Dadurch lassen sich u. a. die Massen von Hadronen, d. h. gebundenen Quarkzuständen, von thermodynamischen Größen oder von wichtigen topologischen Anregungen (Monopole, Instantonen und Solitonen) untersuchen. Neben der QCD werden auch andere Eichtheorien und Spinsysteme auf dem Gitter untersucht, insbesondere solche mit nichtabelscher Eichgruppe (allgemeine Yang-Mills-Theorien analog zur QCD).
rdf:langString
La théorie de jauge sur réseau est une branche de la physique théorique, consistant à étudier les propriétés d'une théorie de jauge sur un modèle discret d’espace-temps, caractérisé mathématiquement comme un réseau. Les théories de jauge jouent un rôle fondamental en physique des particules, puisqu'elles unifient les théories actuellement reçues sur les particules élémentaires : l’électrodynamique quantique, la chromodynamique quantique (QCD) et le « Modèle standard ». Mais les calculs non-perturbés de la théorie de jauge pour le continuum espace-temps reposent formellement sur le calcul d’intégrales de chemin en dimension infinie pratiquement impossibles à évaluer. En discrétisant l'espace-temps, l’intégrale de chemin est en dimension finie, et elle peut être estimée par des techniques de comme la méthode de Monte-Carlo. Lorsque l'on augmente infiniment la taille du réseau (c'est-à-dire le nombre de sommets) et que la maille du réseau tend vers zéro, on comprend intuitivement que les résultats de la simulation tendent vers ceux de la théorie continue de jauge ; toutefois, la démonstration mathématique de cette intuition est encore à venir.
rdf:langString
In physics, lattice gauge theory is the study of gauge theories on a spacetime that has been discretized into a lattice. Gauge theories are important in particle physics, and include the prevailing theories of elementary particles: quantum electrodynamics, quantum chromodynamics (QCD) and particle physics' Standard Model. Non-perturbative gauge theory calculations in continuous spacetime formally involve evaluating an infinite-dimensional path integral, which is computationally intractable. By working on a discrete spacetime, the path integral becomes finite-dimensional, and can be evaluated by stochastic simulation techniques such as the Monte Carlo method. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum gauge theory is recovered.
rdf:langString
In fisica, una teoria di gauge su reticolo è una teoria di gauge in cui l'usuale spaziotempo continuo viene discretizzato con un reticolo tipicamente ipercubico di punti. Le divergenze ultraviolette della teoria di campo sono in questo modo regolarizzate. Sebbene nemmeno la regolarizzazione su reticolo sia in grado di fornire metodi in grado di risolvere molte teorie di gauge analiticamente, le teorie di gauge su reticolo hanno avuto un grandissimo sviluppo perché permettono lo studio delle interazioni forti in modo non perturbativo mediante simulazione al computer. Grazie a simulazioni su reticoli sempre più grandi e con passo reticolare sempre più piccolo, è possibile ritrovare il comportamento delle teorie del continuum spazio-temporale.Importanti supercomputer per ricerche di questo genere sono stati quelli costruiti in Italia nell'ambito del progetto APE100.
rdf:langString
格子ゲージ理論(こうしゲージりろん、lattice gauge theory)は、格子上に離散化された時空におけるゲージ理論である。 低エネルギー領域での量子色力学はその強結合性のために摂動論的取り扱いができないが、この困難を打開するために生まれたのが格子ゲージ理論である。1974年、クォークの閉じ込めを記述するためにケネス・ウィルソンによって初めて提唱された。1980年にはがモンテカルロ法を用いて格子ゲージ理論による数値計算に成功し、以後、”強い相互作用の第一原理計算”として有効活用されている。 格子上で場の理論を扱う場合は格子場の理論、格子上の場の理論、格子上で量子色力学を扱う場合は格子QCD、格子量子色力学などと呼ばれる。
rdf:langString
Em física, teoria de gauge na rede é o estudo de teorias de gauge em um espaço-tempo discreto numa rede. Embora a maioria das teorias de gauge não sejam exatamente solúveis, são de grande utilidade pois podem ser estudadas por simulações computacionais. Espera-se que, executando simulações em rede progressivamente maiores, o comportamento da teoria correspondente no contínuo seja recuperado. Nas teorias de gauge na rede o espaço-tempo passa por uma rotação de Wick, resultando em um espaço euclidiano, descrito por uma rede hiperretangular com espaçamento igual a entre seus sítios. Os campos de quarks são somente definidos nos sítios da rede. Há problemas com a duplicação de férmion, apesar de tudo. Ver . Em vez de um vetor potencial, como no caso contínuo, os campos de gauge são definidas sobre as ligações do retículo e correpondem ao transporte paralelo ao longo da borda que assume valores no grupo de Lie em questão. Daí para simular a cromodinâmica quântica (QCD), para que o grupo de Lie é SU(3), existe uma matriz especial unitária 3 por 3 definida em cada ligação. As faces do retículo são chamadas plaquetas. A ação de Yang-Mills é reescrita usando laços de Wilson sobre plaquetas (isto é simplesmente um "caráter" valorado sobre a composição de variáveis de ligação em torno da plaqueta) de tal forma que o limite formalmente dá a ação de contínuo original. Mais precisamente, nós temos um retículo com vértices, grafos e . Em teoria de retículo, a terminologia alternativa sítios, ligações e plaquetas para vértices, grafos e faces é frequentemente usada. Isto reflete a origem do campo em física do estado sólido. Enquanto que cada grafo não tem orientação intrínseca, para definir as variáveis gauge, nós atribuimos um elemento de um grupo de Lie compacto G a cada grafo uma orientação para ele chamada U. Basicamente, a atribuição para um grafo em uma dada orientação é o grupo inverso da atribuição do mesmo grafo na orientação oposta. Igualmente, as plaquetas não têm orientação intrínseca, mas lhe são dadas temporariamente uma orientação para propósitos computacionais. Dada uma representação irredutível ρ de G, o retículo ação de Yang-Mills é (a soma sobre todos os sítios do retículo do (componente real do) laço de Wilson). Aqui, χ é o "caráter" (traço) e o componente real é redundante se ρ passa a ser uma representação real ou pseudoreal. e1, ..., en são os n grafos do laço de Wilson em sequência. O lado positivo sobre ser real é que se a orientação de um laço de Wilson é trocada, sua contribuição para a ação permanece inalterada. Há muitas ações de Yang-Mills possíveis sobre o retículo, dependendo sobre qual laço de Wilson for usado a fórmula acima. A mais simples é a ação de Wilson, na qual o laço de Wilson é apenas uma plaqueta. Uma desvantagem da ação de Wilson é que a diferença entre ela e a ação contínua é proporcional ao espaçamento do retículo . É possível usar laços de Wilson mais complexos onde esta diferença é proporcional a , tornando as computações mais precisas. Estas são conhecidas como "ações melhoradas". Para calcular uma grandeza (tal como a massa de uma partícula) em teoria de retículo gauge, ela deve ser calculada para cada valor possível do campo gauge sobre cada ligação, e então calculada sua média. Na prática isto é impossível. Em vez disso o método de Monte Carlo é usado para estimar a grandeza. Configurações aleatórias (valores de campos gauge) são geradas com probabilidades proporcionais a , onde é a ação de retículo para que a configuração e seja relacionada ao espaçamento do retículo . A grandeza é calculada para cada configuração. O verdadeiro valor da grandeza é então encontrado por tomar-se a média do valor de um grande número de configurações. Para encontrar o valor da grandeza na teoria contínua isto é repetido para vários valores de e extrapolados a . Teoria do retículo gauge é uma ferramenta importante para cromodinâmica quântica (QCD). A versão discreta da QCD é chamada retículo QCD. O confinamento QCD tem sido apresentado em simulações de Monte Carlo. Confinamento a alta temperatura conduz à formação de um plasma de quarks-glúons. Teoria do retículo gauge tem-se mostrado exatamente duplas de espuma de spin desde que somente laços de Wilson apareçam na ação sobre plaquetas.
xsd:nonNegativeInteger
11704