Laplace transform applied to differential equations
http://dbpedia.org/resource/Laplace_transform_applied_to_differential_equations an entity of type: WikicatOrdinaryDifferentialEquations
Dans la résolution des équations différentielles linéaires à coefficients constants, les propriétés de la transformation de Laplace, concernant la linéarité et la transformée de la dérivée, offrent un moyen de résoudre certaines d'entre elles. Cette technique est un outil pratique pour les ingénieurs.
rdf:langString
Laplacetransformen ersätter differentialekvationer med algebraiska ekvationer och används för att lösa differentialekvationer med begynnelsevärden, utan att först behöva bestämma en allmän lösning och därefter använda begynnelsevärdena för att få fram den önskade lösningen. Detta är speciellt värdefullt när problemet är diskontinuerligt, och varje intervall måste behandlas för sig. I Laplacetransformens algebraiska ekvation blir istället varje intervall en term i ekvationen.
rdf:langString
In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform: One can prove by induction that Now we consider the following differential equation: with given initial conditions Using the linearity of the Laplace transform it is equivalent to rewrite the equation as obtaining Solving the equation for and substituting with one obtains
rdf:langString
Uma equação diferencial ordinária é uma equação que envolve uma função de uma variável e suas derivadas ... Equações diferenciais são geralmente complementadas com condições iniciais e são assim chamada problemas de valor inicial. A transformada de Laplace fornece uma metodologia para resolver e analisar problemas envolvendo equações diferenciais ordinárias. O método consiste em utilizar a transformada de Laplace para converter a equação diferencial em um problema de menor complexidade, através das propriedades da transformada de Laplace. Tipicamente, uma equação linear de coeficientes constantes é transformada em equação algébrica, na qual deve-se basicamente isolar a incógnita obtida e recuperar a solução da equação original via transformada inversa de Laplace.
rdf:langString
rdf:langString
Application de la transformée de Laplace aux équations différentielles
rdf:langString
Laplace transform applied to differential equations
rdf:langString
Método das transformadas de Laplace para resolver equações diferencais
rdf:langString
Laplacetransformen av differentialekvationer
xsd:integer
350830
xsd:integer
999687587
rdf:langString
In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform: One can prove by induction that Now we consider the following differential equation: with given initial conditions Using the linearity of the Laplace transform it is equivalent to rewrite the equation as obtaining Solving the equation for and substituting with one obtains The solution for f(t) is obtained by applying the inverse Laplace transform to Note that if the initial conditions are all zero, i.e. then the formula simplifies to
rdf:langString
Dans la résolution des équations différentielles linéaires à coefficients constants, les propriétés de la transformation de Laplace, concernant la linéarité et la transformée de la dérivée, offrent un moyen de résoudre certaines d'entre elles. Cette technique est un outil pratique pour les ingénieurs.
rdf:langString
Uma equação diferencial ordinária é uma equação que envolve uma função de uma variável e suas derivadas ... Equações diferenciais são geralmente complementadas com condições iniciais e são assim chamada problemas de valor inicial. A transformada de Laplace fornece uma metodologia para resolver e analisar problemas envolvendo equações diferenciais ordinárias. O método consiste em utilizar a transformada de Laplace para converter a equação diferencial em um problema de menor complexidade, através das propriedades da transformada de Laplace. Tipicamente, uma equação linear de coeficientes constantes é transformada em equação algébrica, na qual deve-se basicamente isolar a incógnita obtida e recuperar a solução da equação original via transformada inversa de Laplace. Deve-se ter em mente que, para a aplicação da transformada de Laplace em equações diferenciais, é necessário que exista sensibilidade, ou conhecimento, sobre suas diversas propriedades.
rdf:langString
Laplacetransformen ersätter differentialekvationer med algebraiska ekvationer och används för att lösa differentialekvationer med begynnelsevärden, utan att först behöva bestämma en allmän lösning och därefter använda begynnelsevärdena för att få fram den önskade lösningen. Detta är speciellt värdefullt när problemet är diskontinuerligt, och varje intervall måste behandlas för sig. I Laplacetransformens algebraiska ekvation blir istället varje intervall en term i ekvationen.
xsd:nonNegativeInteger
2752